Please use this identifier to cite or link to this item:
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/7711
Title: | Maximally entangled Rydberg-atom pairs via Landau-Zener sweeps |
Authors: | VARGHESE, DHIYA Wüster, Sebastian Li, Weibin NATH, REJISH Dept. of Physics |
Keywords: | Entanglement in quantum gases Light-matter interaction 2023-APR-WEEK1 TOC-APR-2023 2023 |
Issue Date: | Apr-2023 |
Publisher: | American Physical Society |
Citation: | Physical Review A, 107(4), 043311. |
Abstract: | We analyze the formation of maximally entangled Rydberg atom pairs subjected to Landau-Zener sweeps of the atom-light detuning. Though the populations reach a steady value at longer times, the phases evolve continuously, leading to periodic oscillations in the entanglement entropy. The local unitary equivalence between the obtained maximally entangled states and the Bell states is verified by computing the polynomial invariants. Finally, we study the effect of spontaneous emission from the Rydberg state of rubidium atoms on the correlation dynamics and show that the oscillatory dynamics persists for high-lying Rydberg states. Our study may offer ways to generate maximally entangled states, quantum gates, and exotic quantum matter in arrays of Rydberg atoms through Landau Zener sweeps. |
URI: | https://doi.org/10.1103/PhysRevA.107.043311 http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/7711 |
ISSN: | 2469-9934 2469-9926 |
Appears in Collections: | JOURNAL ARTICLES |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.