Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/7760
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSETH, JITESH-
dc.contributor.authorLokwani, Rohit-
dc.contributor.authorKulkarni, Viraj-
dc.contributor.authorPant, Aniruddha-
dc.contributor.authorKharat, Amit-
dc.contributor.editorTuba, Milan-
dc.contributor.editorAkashe, Shyam-
dc.contributor.editorJoshi, Amit-
dc.date.accessioned2023-04-27T06:34:53Z-
dc.date.available2023-04-27T06:34:53Z-
dc.date.issued2022-01-
dc.identifier.citationICT Systems and Sustainability, 281–292.en_US
dc.identifier.isbn9789811659867-
dc.identifier.isbn9789811659874-
dc.identifier.urihttps://doi.org/10.1007/978-981-16-5987-4_29en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/7760-
dc.description.abstractHome ICT Systems and Sustainability Conference paper Reducing Labelled Data Requirement for Pneumonia Segmentation Using Image Augmentations Jitesh Seth, Rohit Lokwani, Viraj Kulkarni, Aniruddha Pant & Amit Kharat Conference paper First Online: 04 January 2022 645 Accesses Part of the Lecture Notes in Networks and Systems book series (LNNS,volume 321) Abstract Deep learning semantic segmentation algorithms can localise abnormalities or opacities from chest radiographs. However, the task of collecting and annotating training data is expensive and requires expertise which remains a bottleneck for algorithm performance. We investigate the effect of image augmentations on reducing the requirement of labelled data in the semantic segmentation of chest X-rays for pneumonia detection. We train fully convolutional network models on subsets of different sizes from the total training data. We apply a different image augmentation while training each model and compare it to the baseline trained on the entire dataset without augmentations. We find that rotate and mixup are the best augmentations amongst rotate, mixup, translate, gamma and horizontal flip, wherein they reduce the labelled data requirement by 70% while performing comparably to the baseline in terms of AUC and mean IoU in our experiments.en_US
dc.language.isoenen_US
dc.publisherSpringer Natureen_US
dc.subjectSemantic segmentationen_US
dc.subjectAugmentationen_US
dc.subjectChest X-raysen_US
dc.subjectMedical image analysisen_US
dc.subjectDeep learningen_US
dc.subject2022en_US
dc.titleReducing Labelled Data Requirement for Pneumonia Segmentation Using Image Augmentationsen_US
dc.typeBook chapteren_US
dc.contributor.departmentDept. of Data Scienceen_US
dc.title.bookICT Systems and Sustainabilityen_US
dc.identifier.doihttps://doi.org/10.1007/978-981-16-5987-4_29en_US
dc.identifier.sourcetitleICT Systems and Sustainabilityen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:BOOK CHAPTERS

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.