Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/7904
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorSchultens, Jennifer-
dc.contributor.authorBEZBARUA, IPSA-
dc.date.accessioned2023-05-18T09:15:32Z-
dc.date.available2023-05-18T09:15:32Z-
dc.date.issued2023-05-
dc.identifier.citation115en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/7904-
dc.description.abstractIn this thesis project, we study various properties related to two well-known simplicial complexes on the Seifert surfaces of links - the incompressible complex and the Kakimizu complex (named after Osamu Kakimizu). We first look at Kakimizu’s original paper from 1992, in which he defines these complexes and describes a metric coming from the cyclic covering space of the knot complement, which is the same as the graph metric on the complexes. Then we study various properties of the Kakimizu complex, like connectedness, contractibility, local infiniteness and its coarse geometry. Finally, we try to extend some of these properties to the incompressible complex, and find a restriction on the types of knots that can have Kakimizu complex homeomorphic to the real line.en_US
dc.description.sponsorshipKishore Vaigyanik Protsahan Yojana (KVPY)en_US
dc.language.isoenen_US
dc.subjectCyclic covering spaceen_US
dc.subjectSimplicial complexen_US
dc.subjectKakimizu complexen_US
dc.subjectContractibilityen_US
dc.subjectCoarse geometryen_US
dc.subjectLocal infinitenessen_US
dc.titleSimplicial Complexes on Seifert Surfaces of Linksen_US
dc.typeThesisen_US
dc.description.embargoOne Yearen_US
dc.type.degreeBS-MSen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.contributor.registration20181124en_US
Appears in Collections:MS THESES

Files in This Item:
File Description SizeFormat 
20181124_Ipsa_Bezbarua_MS_Thesis.pdfMS Thesis2.65 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.