Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/7964
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorWakayama, Masato-
dc.contributor.authorMANNA, RIDDHI-
dc.date.accessioned2023-05-22T06:34:51Z-
dc.date.available2023-05-22T06:34:51Z-
dc.date.issued2023-05-
dc.identifier.citation67en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/7964-
dc.description.abstractIn this thesis, the spectral zeta function associated with the Jaynes-Cummings Hamiltonian is explored. The thesis first reviews the known results about the spectral properties of the JC Hamiltonian and then goes on to prove the analytic continuation of the JC spectral zeta function using summation formulas. This proof is completed in two parts, first the analytic continuation to Re(s) > 0 is shown followed by the analytic continuation to the entire complex plane. This proof involves analysing some hypergeometric functions arising naturally from the summation formulas used in the proof. Some possible areas where this proof might be applied in the future are discussed.en_US
dc.description.sponsorshipNippon Telegraph and Telephone Corporationen_US
dc.language.isoenen_US
dc.subjectNumber theoryen_US
dc.subjectSpectral zeta functionen_US
dc.subjectJaynes-Cummings modelen_US
dc.subjectanalytic continuationen_US
dc.titleStudy on the spectral zeta function of the Jaynes-Cummings modelen_US
dc.typeThesisen_US
dc.description.embargoOne Yearen_US
dc.type.degreeBS-MSen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.contributor.registration20181217en_US
Appears in Collections:MS THESES

Files in This Item:
File Description SizeFormat 
20181217_Riddhi_Manna_MS_ThesisMS Thesis920.34 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.