Please use this identifier to cite or link to this item:
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/7997
Title: | Torus geometry eigenfunctions of an interacting multi-Landau-level Hamiltonian |
Authors: | ANAND, ABHISHEK Pu, Songyang SREEJITH, G. J. Dept. of Physics |
Keywords: | Physics 2023-MAY-WEEK2 TOC-MAY-2023 2023 |
Issue Date: | May-2023 |
Publisher: | American Physical Society |
Citation: | Physical Review B, 107(19), 195126. |
Abstract: | A short-ranged, rotationally symmetric multi-Landau-level model Hamiltonian for strongly interacting electrons in a magnetic field was proposed [A. Anand et al., Phys. Rev. Lett. 126, 136601 (2021)] with the key feature that it allows exact many-body eigenfunctions on the disk not just for quasiholes but for all charged and neutral excitations of the entire Jain sequence filling fractions. We extend this to geometries without full rotational symmetry, namely, the torus and cylinder geometries, and present their spectra. Exact diagonalization of the interaction on the torus produces the low-energy spectra at filling fraction ν=n/(2pn+1) that is identical, up to a topological (2pn+1)-fold multiplicity, to that of the integer quantum Hall spectra at ν=n, for the incompressible state as well as all excitations. While the ansatz eigenfunctions in the disk geometry cannot be generalized to closed geometries such as torus or sphere, we show how to extend them to cylinder geometry. Meanwhile, we show eigenfunctions for charged excitations at filling fractions between 13 and 25 can be written on the torus and the spherical geometries. |
URI: | https://doi.org/10.1103/PhysRevB.107.195126 http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/7997 |
ISSN: | 2469-9969 2469-9950 |
Appears in Collections: | JOURNAL ARTICLES |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.