Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/8048
Title: A note on Hopf’s lemma and strong minimum principle for nonlocal equations with non-standard growth
Authors: SEN, ABHROJYOTI
Dept. of Mathematics
Keywords: Fractional nonlocal equations
Young function
Hopf's lemma
Strong minimum principle
Fractional Orlicz-Sobolev space
2023-JUN-WEEK1
TOC-JUN-2023
2023
Issue Date: May-2023
Publisher: Walter de Gruyter
Citation: Forum Mathematicum, 35(06), 1549-1561.
Abstract: Let Omega subset of R-n be any open set and u a weak supersolution of Lu = c(x)g(vertical bar u vertical bar) u/vertical bar u vertical bar, where |u|, where Lu(x) = p.v. (Rn)integral g vertical bar u(x)-u(y)vertical bar/vertical bar x-y vertical bar(s)) u(x) -u (y)/vertical bar u(x) - u(y)vertical bar K(x;y)dy/vertical bar x -y vertical bar(s) and g = G' for some Young function G. This note imparts a Hopf type lemma and strong minimum principle for u when c(x) is continuous in (Omega) over bar that extend the results of Del Pezzo and Quaas [A Hopf's lemma and a strong minimum principle for the fractional p-Laplacian, J. Differential Equations 263 (2017), no. 1, 765-778] in fractional Orlicz-Sobolev setting.
URI: https://doi.org/10.1515/forum-2022-0331
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/8048
ISSN: 0933-7741
1435-5337
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.