Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/8048
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSEN, ABHROJYOTIen_US
dc.date.accessioned2023-06-26T03:56:27Z
dc.date.available2023-06-26T03:56:27Z
dc.date.issued2023-05en_US
dc.identifier.citationForum Mathematicum, 35(06), 1549-1561.en_US
dc.identifier.issn0933-7741en_US
dc.identifier.issn1435-5337en_US
dc.identifier.urihttps://doi.org/10.1515/forum-2022-0331en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/8048
dc.description.abstractLet Omega subset of R-n be any open set and u a weak supersolution of Lu = c(x)g(vertical bar u vertical bar) u/vertical bar u vertical bar, where |u|, where Lu(x) = p.v. (Rn)integral g vertical bar u(x)-u(y)vertical bar/vertical bar x-y vertical bar(s)) u(x) -u (y)/vertical bar u(x) - u(y)vertical bar K(x;y)dy/vertical bar x -y vertical bar(s) and g = G' for some Young function G. This note imparts a Hopf type lemma and strong minimum principle for u when c(x) is continuous in (Omega) over bar that extend the results of Del Pezzo and Quaas [A Hopf's lemma and a strong minimum principle for the fractional p-Laplacian, J. Differential Equations 263 (2017), no. 1, 765-778] in fractional Orlicz-Sobolev setting.en_US
dc.language.isoenen_US
dc.publisherWalter de Gruyteren_US
dc.subjectFractional nonlocal equationsen_US
dc.subjectYoung functionen_US
dc.subjectHopf's lemmaen_US
dc.subjectStrong minimum principleen_US
dc.subjectFractional Orlicz-Sobolev spaceen_US
dc.subject2023-JUN-WEEK1en_US
dc.subjectTOC-JUN-2023en_US
dc.subject2023en_US
dc.titleA note on Hopf’s lemma and strong minimum principle for nonlocal equations with non-standard growthen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleForum Mathematicumen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.