Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/8057
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBalwe, Chetanen_US
dc.contributor.authorHOGADI, AMITen_US
dc.contributor.authorSawant, Ananden_US
dc.date.accessioned2023-06-26T03:56:28Z
dc.date.available2023-06-26T03:56:28Z
dc.date.issued2023-06en_US
dc.identifier.citationJournal of Topology, 16(2), 634-649.en_US
dc.identifier.issn1753-8416en_US
dc.identifier.issn1753-8424en_US
dc.identifier.urihttps://doi.org/10.1112/topo.12298en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/8057
dc.description.abstractWe show that the sheaf of A1-connected components of a reductive algebraic group over a perfect field is strongly A1-invariant. As a consequence, torsors under such groups give rise to A1-fiber sequences. We also show that sections of A1-connected components of anisotropic, semisimple, simply connected algebraic groups over an arbitrary field agree with their R-equivalence classes, thereby removing the perfectness assumption in the previously known results about the characterization of isotropy in terms of affine homotopy invariance of Nisnevich locally trivial torsors.en_US
dc.language.isoenen_US
dc.publisherWileyen_US
dc.subjectSplitting Vector-Bundlesen_US
dc.subjectA(1)-Homotopy Theoryen_US
dc.subjectPrincipal Bundles2023-JUN-WEEK3en_US
dc.subjectTOC-JUN-2023en_US
dc.subject2023en_US
dc.titleStrong A1-invariance of A1-connected components of reductive algebraic groupsen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleJournal of Topologyen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.