Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/8104
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDasgupta, Jyotien_US
dc.contributor.authorKHAN, BIVASen_US
dc.contributor.authorBiswas, Indranilen_US
dc.contributor.authorDey, Arijiten_US
dc.contributor.authorPODDAR, MAINAKen_US
dc.date.accessioned2023-07-31T10:46:33Z
dc.date.available2023-07-31T10:46:33Z
dc.date.issued2023-07en_US
dc.identifier.citationTransformation Groupsen_US
dc.identifier.issn1531-586Xen_US
dc.identifier.issn1083-4362en_US
dc.identifier.urihttps://doi.org/10.1007/s00031-023-09812-5en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/8104
dc.description.abstractLet X be a complex toric variety equipped with the action of an algebraic torus T, and let G be a complex linear algebraic group. We classify all T-equivariant principal G-bundles \mathcal {E} over X and the morphisms between them. When G is connected and reductive, we characterize the equivariant automorphism group \text {Aut}_T(\mathcal {E} ) of \mathcal {E} as the intersection of certain parabolic subgroups of G that arise naturally from the T-action on \mathcal {E}. We then give a criterion for the equivariant reduction of the structure group of \mathcal {E} to a Levi subgroup of G in terms of \text {Aut}_T(\mathcal {E} ). We use it to prove a principal bundle analogue of Kaneyama’s theorem on equivariant splitting of torus equivariant vector bundles of small rank over a projective space. When X is projective and G is connected and reductive, we show that the notions of stability and equivariant stability are equivalent for any T-equivariant principal G-bundle over X.en_US
dc.language.isoenen_US
dc.publisherSpringer Natureen_US
dc.subjectToric varietyen_US
dc.subjectEquivariant principal bundleen_US
dc.subjectStabilityen_US
dc.subjectAutomorphismen_US
dc.subjectLevi reductionen_US
dc.subject2023-JUL-WEEK4en_US
dc.subjectTOC-JUL-2023en_US
dc.subject2023en_US
dc.titleClassification, Reduction, and Stability of Toric Principal Bundlesen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleTransformation Groupsen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.