Please use this identifier to cite or link to this item:
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/8119
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | BISWAS, KORAK | en_US |
dc.contributor.author | PATEL, KUSHAL | en_US |
dc.contributor.author | MAURYA, S. SAGAR | en_US |
dc.contributor.author | DUTTA, PRANAB | en_US |
dc.contributor.author | RAPOL, UMAKANT D. | en_US |
dc.date.accessioned | 2023-08-11T07:21:48Z | |
dc.date.available | 2023-08-11T07:21:48Z | |
dc.date.issued | 2023-07 | en_US |
dc.identifier.citation | AIP Advances 13(07), 075313. | en_US |
dc.identifier.issn | 2158-3226 | en_US |
dc.identifier.uri | https://doi.org/10.1063/5.0145844 | en_US |
dc.identifier.uri | http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/8119 | |
dc.description.abstract | We implemented optimization techniques of machine learning (ML) to obtain the mutually exclusive sets of experimental parameters that maximize the number of strontium atoms of different isotopes (88Sr, 86Sr, and 87Sr) in a magneto-optical trap (MOT). Machine learning optimization techniques are significantly faster than conventional manual optimization. While optimizing the parameters, these algorithms efficiently tackle the problem of being confined in one of the local maxima in the parametric space. Thus, ML can be implemented to automate the loading of different isotopes into MOT to perform multiple experiments in a single setup. | en_US |
dc.language.iso | en | en_US |
dc.publisher | AIP Publishing | en_US |
dc.subject | Atoms | en_US |
dc.subject | 2023-AUG-WEEK1 | en_US |
dc.subject | TOC-AUG-2023 | en_US |
dc.subject | 2023 | en_US |
dc.title | Machine-learning-based automated loading of strontium isotopes into magneto-optical trap | en_US |
dc.type | Article | en_US |
dc.contributor.department | Dept. of Physics | en_US |
dc.identifier.sourcetitle | AIP Advances | en_US |
dc.publication.originofpublisher | Foreign | en_US |
Appears in Collections: | JOURNAL ARTICLES |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.