Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/8119
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBISWAS, KORAKen_US
dc.contributor.authorPATEL, KUSHALen_US
dc.contributor.authorMAURYA, S. SAGARen_US
dc.contributor.authorDUTTA, PRANABen_US
dc.contributor.authorRAPOL, UMAKANT D.en_US
dc.date.accessioned2023-08-11T07:21:48Z
dc.date.available2023-08-11T07:21:48Z
dc.date.issued2023-07en_US
dc.identifier.citationAIP Advances 13(07), 075313.en_US
dc.identifier.issn2158-3226en_US
dc.identifier.urihttps://doi.org/10.1063/5.0145844en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/8119
dc.description.abstractWe implemented optimization techniques of machine learning (ML) to obtain the mutually exclusive sets of experimental parameters that maximize the number of strontium atoms of different isotopes (88Sr, 86Sr, and 87Sr) in a magneto-optical trap (MOT). Machine learning optimization techniques are significantly faster than conventional manual optimization. While optimizing the parameters, these algorithms efficiently tackle the problem of being confined in one of the local maxima in the parametric space. Thus, ML can be implemented to automate the loading of different isotopes into MOT to perform multiple experiments in a single setup.en_US
dc.language.isoenen_US
dc.publisherAIP Publishingen_US
dc.subjectAtomsen_US
dc.subject2023-AUG-WEEK1en_US
dc.subjectTOC-AUG-2023en_US
dc.subject2023en_US
dc.titleMachine-learning-based automated loading of strontium isotopes into magneto-optical trapen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Physicsen_US
dc.identifier.sourcetitleAIP Advancesen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.