Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/8156
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSantra, Ionen_US
dc.contributor.authorAJGAONKAR, DURGESHen_US
dc.contributor.authorBasu, Urnaen_US
dc.date.accessioned2023-08-25T05:37:46Z
dc.date.available2023-08-25T05:37:46Z
dc.date.issued2023-08en_US
dc.identifier.citationJournal of Statistical Mechanics: Theory and Experiment, 2023(08).en_US
dc.identifier.issn1742-5468en_US
dc.identifier.urihttps://doi.org/10.1088/1742-5468/ace3b5en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/8156
dc.description.abstractWe study the motion of a one-dimensional particle that reverses its direction of acceleration stochastically. We focus on two contrasting scenarios, where the waiting times between two consecutive acceleration reversals are drawn from (i) an exponential distribution and (ii) a power-law distribution . We compute the mean, variance and short-time distribution of the position x(t) using a trajectory-based approach. We show that, while for the exponential waiting time, at long times, for the power-law case, a non-trivial algebraic growth  emerges, where ,  and  for  and α > 2, respectively. Interestingly, we find that the long-time position distribution in case (ii) is a function of the scaled variable  with an α-dependent scaling function, which has qualitatively very different shapes for α < 1 and α > 1. In contrast, for case (i), the typical long-time fluctuations of position are Gaussian.en_US
dc.language.isoenen_US
dc.publisherIOP Publishingen_US
dc.subjectStochastic processesen_US
dc.subjectNon-markovian waiting timesen_US
dc.subjectStochastic accelerationen_US
dc.subjectExact resultsen_US
dc.subject2023-AUG-WEEK3en_US
dc.subjectTOC-AUG-2023en_US
dc.subject2023en_US
dc.titleThe dichotomous acceleration process in one dimension: position fluctuationsen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Physicsen_US
dc.identifier.sourcetitleJournal of Statistical Mechanics: Theory and Experimenten_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.