Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/8162
Title: Kolmogorov continuity and stability of sample paths of entropy solutions of stochastic conservation laws
Authors: Bhar, Suprio
Biswas, Imran H.
KHAN, SAIBAL
Vallet, Guy
Dept. of Mathematics
Keywords: Stochastic partial differential equations
Stochastic conservation laws
Stochastic entropy solution
Kolmogorov continuity
2023-AUG-WEEK4
TOC-AUG-2023
2023
Issue Date: Jun-2023
Publisher: World Scientific Publishing Co Pte Ltd
Citation: Journal of Hyperbolic Differential Equations, 20(02), 277-348.
Abstract: This paper is concerned with sample paths and path-based properties of the entropy solution to conservation laws with stochastic forcing. We derive a series of uniform maximal-type estimates for the viscous perturbation and establish the existence of stochastic entropy solution that has Hölder continuous sample paths. This information is then carefully choreographed with Kružkov’s technique to obtain stronger continuous dependence estimates, based on the nonlinearities, for the sample paths of the solutions. Finally, convergence of sample paths is established for vanishing viscosity approximation along with an explicit rate of convergence.
URI: https://doi.org/10.1142/S0219891623500091
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/8162
ISSN: 0219-8916
1793-6993
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.