Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/8189
Full metadata record
DC FieldValueLanguage
dc.contributor.authorToft, Joachimen_US
dc.contributor.authorBHIMANI, DIVYANG G.en_US
dc.contributor.authorManna, Rameshen_US
dc.date.accessioned2023-09-15T11:53:00Z-
dc.date.available2023-09-15T11:53:00Z-
dc.date.issued2023-11en_US
dc.identifier.citationApplied and Computational Harmonic Analysis, 67, 101580.en_US
dc.identifier.issn1063-5203en_US
dc.identifier.issn1096-603Xen_US
dc.identifier.urihttps://doi.org/10.1016/j.acha.2023.101580en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/8189-
dc.description.abstractWe give a proof of that harmonic oscillator propagators and fractional Fourier transforms are essentially the same. We deduce continuity properties and fix time estimates for such operators on modulation spaces, and apply the results to prove Strichartz estimates for such propagators when acting on Pilipović and modulation spaces. Especially we extend some results by Balhara, Cordero, Nicola, Rodino and Thangavelu. We also show that general forms of fractional harmonic oscillator propagators are continuous on suitable Pilipović spaces.en_US
dc.language.isoenen_US
dc.publisherElsevier B.V.en_US
dc.subjectPilopović spacesen_US
dc.subjectModulation spacesen_US
dc.subjectWiener amalgamen_US
dc.subjectBargmann transformen_US
dc.subjectHarmonic oscillatoren_US
dc.subjectPropagatorsen_US
dc.subjectStrichartz estimatesen_US
dc.subject2023-SEP-WEEK2en_US
dc.subjectTOC-SEP-2023en_US
dc.subject2023en_US
dc.titleFractional Fourier transforms, harmonic oscillator propagators and Strichartz estimates on Pilipović and modulation spacesen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleApplied and Computational Harmonic Analysis,en_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.