Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/8258
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKUMAR, ANKITen_US
dc.contributor.authorKUMAR, KEDIA, DINESHen_US
dc.contributor.authorGHOSH, PRASENJITen_US
dc.contributor.authorSINGH, SURJEETen_US
dc.date.accessioned2023-11-01T03:51:14Z
dc.date.available2023-11-01T03:51:14Z
dc.date.issued2023-10en_US
dc.identifier.citationACS Applied Energy Materials, 6(20), 10694–10703.en_US
dc.identifier.issn2574-0962en_US
dc.identifier.urihttps://doi.org/10.1021/acsaem.3c01888en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/8258
dc.description.abstractWe report on the dramatic improvement in the thermoelectric performance of TiCoSb by introducing three-dimensional (3D) modulation doping and synergistic band engineering in the composites of the form (1 – f)A + fB, where A and B refer to the phases Ti1–xNbxCoSb and Nb0.8+δCoSb, respectively, and f is the volume fraction of phase B. We show that the electrical conductivity and Seebeck coefficient of these composites increase simultaneously due to modulation doping, giving rise to colossal power factor (PF) enhancement from 0.3 μW cm–1 K–2 (TiCoSb) to 18 μW cm–1 K–2 (x = f ≈ 0.05) at 300 K and exceeding 25 μW cm–1 K–2 over a broad temperature range (T > 600 K). Due to the Ti–Nb point mass fluctuation in phase A, high concentration of defects in phase B, and interfacial phonon scattering between A and B, these composites also exhibit very low lattice thermal conductivity (κL), resulting in a high zT of 0.81 near 970 K. The simulation of κL using the Klemens model successfully describes the significant reduction of κL for these composites, observed experimentally. Our ab initio DFT calculations show that Ti1–xNbxCoSb exhibits band convergence as x increases, which contributes to improving the charge transport. Thus, benefiting from the synergistic effect of band convergence and 3D modulation doping, a high zT is obtained.en_US
dc.language.isoenen_US
dc.publisherAmerican Chemical Societyen_US
dc.subjectThermoelectricsen_US
dc.subjectHalf-Heuslersen_US
dc.subjectFigure of meriten_US
dc.subjectCharge modulationen_US
dc.subjectBand engineeringen_US
dc.subject2023-OCT-WEEK4en_US
dc.subjectTOC-OCT-2023en_US
dc.subject2023en_US
dc.titleBand Engineering and Synergistic Modulation Doping for Excellent Thermoelectric Performance in Composites Ti1–xNbxCoSb–Nb0.8+δCoSben_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Physicsen_US
dc.identifier.sourcetitleACS Applied Energy Materialsen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.