Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/8307
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBharali, Gautamen_US
dc.contributor.authorBORAH, DIGANTAen_US
dc.contributor.authorGorai, Sushilen_US
dc.date.accessioned2023-11-24T06:35:33Z
dc.date.available2023-11-24T06:35:33Z
dc.date.issued2023-10en_US
dc.identifier.citationJournal of Geometric Analysis, 33, 383.en_US
dc.identifier.issn1050-6926en_US
dc.identifier.issn1559-002Xen_US
dc.identifier.urihttps://doi.org/10.1007/s12220-023-01439-yen_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/8307
dc.description.abstractWe present a new application of the squeezing function s(D), using which one may detect when a given bounded pseudoconvex domain D not subset of C-n, n >= 2, is not biholomorphic to any product domain. One of the ingredients used in establishing this result is also used to give an exact computation of the squeezing function (which is a constant) of any bounded symmetric domain. This extends a computation by Kubota to any Cartesian product of Cartan domains at least one of which is an exceptional domain. Our method circumvents any case-by-case analysis by rank and also provides optimal estimates for the squeezing functions of certain domains. Lastly, we identify a family of bounded domains that are holomorphic homogeneous regular.en_US
dc.language.isoenen_US
dc.publisherSpringer Natureen_US
dc.subjectHolomorphic homogeneous regular domainsen_US
dc.subjectCartan domainsen_US
dc.subjectSqueezing functionen_US
dc.subject2023-NOV-WEEK3en_US
dc.subjectTOC-NOV-2023en_US
dc.subject2023en_US
dc.titleThe Squeezing Function: Exact Computations, Optimal Estimates, and a New Applicationen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleJournal of Geometric Analysisen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.