Please use this identifier to cite or link to this item:
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/8354
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | ANAMBY, PRAMATH | en_US |
dc.date.accessioned | 2023-12-19T11:03:17Z | |
dc.date.available | 2023-12-19T11:03:17Z | |
dc.date.issued | 2023-11 | en_US |
dc.identifier.citation | International Journal of Number Theory, 20(02), 549-564. | en_US |
dc.identifier.issn | 1793-0421 | en_US |
dc.identifier.issn | 1793-7310 | en_US |
dc.identifier.uri | https://doi.org/10.1142/S1793042124500295 | en_US |
dc.identifier.uri | http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/8354 | |
dc.description.abstract | We prove that a nonzero Jacobi form of level N (an odd integer) and square-free index m(1)m(2) with m1|N and (N, m(2)) = 1 has a nonzero theta component h mu with either (mu, 2m(1)m(2)) = 1 or (mu, 2m(1)m(2)) f (2)m(2). As an application, we prove that a nonzero Siegel cusp form F of degree 2 and an odd level N in the Atkin-Lehner type newspace is determined by fundamental Fourier coefficients up to a divisor of N. | en_US |
dc.language.iso | en | en_US |
dc.publisher | World Scientific Publishing Co Pte Ltd | en_US |
dc.subject | Jacobi forms | en_US |
dc.subject | theta components | en_US |
dc.subject | Fourier coefficients | en_US |
dc.subject | Siegel modular forms | en_US |
dc.subject | non-vanishing | en_US |
dc.subject | 2023-DEC-WEEK3 | en_US |
dc.subject | TOC-DEC-2023 | en_US |
dc.subject | 2023 | en_US |
dc.title | Non-vanishing of theta components of Jacobi forms with level and an application | en_US |
dc.type | Article | en_US |
dc.contributor.department | Dept. of Mathematics | en_US |
dc.identifier.sourcetitle | International Journal of Number Theory | en_US |
dc.publication.originofpublisher | Foreign | en_US |
Appears in Collections: | JOURNAL ARTICLES |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.