Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/8354
Full metadata record
DC FieldValueLanguage
dc.contributor.authorANAMBY, PRAMATHen_US
dc.date.accessioned2023-12-19T11:03:17Z
dc.date.available2023-12-19T11:03:17Z
dc.date.issued2023-11en_US
dc.identifier.citationInternational Journal of Number Theory, 20(02), 549-564.en_US
dc.identifier.issn1793-0421en_US
dc.identifier.issn1793-7310en_US
dc.identifier.urihttps://doi.org/10.1142/S1793042124500295en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/8354
dc.description.abstractWe prove that a nonzero Jacobi form of level N (an odd integer) and square-free index m(1)m(2) with m1|N and (N, m(2)) = 1 has a nonzero theta component h mu with either (mu, 2m(1)m(2)) = 1 or (mu, 2m(1)m(2)) f (2)m(2). As an application, we prove that a nonzero Siegel cusp form F of degree 2 and an odd level N in the Atkin-Lehner type newspace is determined by fundamental Fourier coefficients up to a divisor of N.en_US
dc.language.isoenen_US
dc.publisherWorld Scientific Publishing Co Pte Ltden_US
dc.subjectJacobi formsen_US
dc.subjecttheta componentsen_US
dc.subjectFourier coefficientsen_US
dc.subjectSiegel modular formsen_US
dc.subjectnon-vanishingen_US
dc.subject2023-DEC-WEEK3en_US
dc.subjectTOC-DEC-2023en_US
dc.subject2023en_US
dc.titleNon-vanishing of theta components of Jacobi forms with level and an applicationen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleInternational Journal of Number Theoryen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.