Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/8358
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBANERJEE, DEBARGHAen_US
dc.contributor.authorMerel, Loicen_US
dc.date.accessioned2023-12-19T11:03:17Z
dc.date.available2023-12-19T11:03:17Z
dc.date.issued2023-11en_US
dc.identifier.citationForum Mathematicum, 36(02).en_US
dc.identifier.issn0933-7741en_US
dc.identifier.issn1435-5337en_US
dc.identifier.urihttps://doi.org/10.1515/forum-2022-0116en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/8358
dc.description.abstractLet Gamma be a subgroup of finite index of SL2(Z). We give an analytic criterion for a cuspidal divisor to be torsion in the Jacobian J(Gamma) of the corresponding modular curve X-Gamma. Our main tool is the explicit description, in terms of modular symbols, of what we call Eisenstein cycles. The latter are representations of relative homology classes over which integration of any holomorphic differential forms vanishes. Our approach relies in an essential way on the specific case Gamma subset of Gamma(2), where we can consider convenient generalized Jacobians instead of J(Gamma). We relate the Eisenstein classes to the scattering constants attached to Eisenstein series. Finally, we illustrate our approach by considering Fermat curves.en_US
dc.language.isoenen_US
dc.publisherWalter De Gruyteren_US
dc.subjectEisenstein seriesen_US
dc.subjectModular symbolsen_US
dc.subjectspecial values of L-functionsen_US
dc.subject2023-DEC-WEEK3en_US
dc.subjectTOC-DEC-2023en_US
dc.subject2024en_US
dc.titleEisenstein cycles and Manin-Drinfeld propertiesen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleForum Mathematicumen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.