Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/837
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorBHAGWAT, CHANDRASHEELen_US
dc.contributor.authorNAIR, AJITHen_US
dc.date.accessioned2018-04-23T03:19:45Z
dc.date.available2018-04-23T03:19:45Z
dc.date.issued2017-04en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/837-
dc.description.abstractIn his 1956 paper, Selberg proved the famous Trace Formula for a semisimple Lie group G and its discrete subgroup 􀀀. The case when G = SL2(R) is quite well-known. In this thesis, we look at the decomposition of L2(􀀀nG) into irreducible unitary representations of G. The multiplicities of the spherical representations correspond to the eigenvalues of the Laplacian on the locally symmetric space 􀀀nG=K. Our aim will be to nd a nite threshold on the multiplicity spectrum, or equivalently for the eigenvalue spectrum, which determines the entire spectrum.en_US
dc.language.isoenen_US
dc.subject2017
dc.subjectMathematicsen_US
dc.subjectHarmonic analysisen_US
dc.subjectSymmetric spacesen_US
dc.subjectCocompact discrete subgroupsen_US
dc.subjectSL2(R)en_US
dc.titleHarmonic analysis on locally symmetric spaces associated to cocompact discrete subgroups of SL2(R)en_US
dc.typeThesisen_US
dc.type.degreeBS-MSen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.contributor.registration20121090en_US
Appears in Collections:MS THESES

Files in This Item:
File Description SizeFormat 
20121090_Ajith_Nair.pdf269.89 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.