Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/8402
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAROTE, PRASHANTen_US
dc.contributor.authorMISHRA, MANISHen_US
dc.date.accessioned2024-01-24T04:25:48Z
dc.date.available2024-01-24T04:25:48Z
dc.date.issued2024-05en_US
dc.identifier.citationInternational Mathematics Research Notices, 2024(09), 7700–7720.en_US
dc.identifier.issn1073-7928en_US
dc.identifier.issn1687-0247en_US
dc.identifier.urihttps://doi.org/10.1093/imrn/rnad296en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/8402
dc.description.abstractLet $G$ be a connected reductive group defined over a finite field ${\mathbb{F}}_{q}$ with corresponding Frobenius $F$. Let $\iota _{G}$ denote the duality involution defined by D. Prasad under the hypothesis $2\textrm{H}<^>{1}(F,Z(G))=0$, where $Z(G)$ denotes the center of $G$. We show that for each irreducible character $\rho $ of $G<^>{F}$, the involution $\iota _{G}$ takes $\rho $ to its dual $\rho <^>{\vee }$ if and only if for a suitable Jordan decomposition of characters, an associated unipotent character $u_{\rho }$ has Frobenius eigenvalues $\pm $ 1. As a corollary, we obtain that if $G$ has no exceptional factors and satisfies $2\textrm{H}<^>{1}(F,Z(G))=0$, then the duality involution $\iota _{G}$ takes $\rho $ to its dual $\rho <^>{\vee }$ for each irreducible character $\rho $ of $G<^>{F}$. Our results resolve a finite group counterpart of a conjecture of D. Prasad.en_US
dc.language.isoenen_US
dc.publisherOxford University Pressen_US
dc.subjectReductive groupsen_US
dc.subjectCharactersen_US
dc.subjectRepresentationsen_US
dc.subject2024-JAN-WEEK1en_US
dc.subjectTOC-JAN-2024en_US
dc.subject2024en_US
dc.titlePrasad’s Conjecture About Dualizing Involutionsen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleInternational Mathematics Research Noticesen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.