Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/8412
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSEN, ABHROJYOTIen_US
dc.contributor.authorSen, Anupamen_US
dc.date.accessioned2024-01-24T04:25:49Z
dc.date.available2024-01-24T04:25:49Z
dc.date.issued2024-01en_US
dc.identifier.citationJournal of Dynamics and Differential Equationsen_US
dc.identifier.issn1572-9222en_US
dc.identifier.issn1040-7294en_US
dc.identifier.urihttps://doi.org/10.1007/s10884-023-10337-4en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/8412
dc.description.abstractThis article addresses the question concerning the existence of global entropy solution for generalized Eulerian droplet models with air velocity depending on both space and time variables. When f (u) = u, kappa(t) = const. and ua(x, t) = const. in (1.1), the study of the Riemann problem has been carried out by Keita and Bourgault (J Math Anal Appl 472(1):1001-1027, 2019) and Zhang et al. (Appl Anal 102(2):576-589, 2023). We show the global existence of the entropy solution to (1.1) for any strictly increasing function f () and ua(x, t) depending only on time with mild regularity assumptions on the initial data via shadow wave tracking approach. This represents a significant improvement over the findings of Yang (J Differ Equ 159(2):447-484, 1999). Next, by using the generalized variational principle, we prove the existence of an explicit entropy solution to (1.1) with f (u) = u, for all time t > 0 and initial mass v0 > 0, where ua(x, t) depends on both space and time variables, and also has an algebraic decay in the time variable. This improves the results of many authors such as Ha et al. (J Differ Equ 257(5):1333-1371, 2014), Cheng and Yang (Appl Math Lett 135(6):8, 2023) and Ding and Wang (Quart Appl Math 62(3):509-528, 2004) in various ways. Furthermore, by employing the shadow wave tracking procedure, we discuss the existence of global entropy solution to the generalized two-phase flow model with time-dependent air velocity that extends the recent results of Shen and Sun (J Differ Equ 314:1-55, 2022).en_US
dc.language.isoenen_US
dc.publisherSpringer Natureen_US
dc.subjectEulerian droplet modelen_US
dc.subjectPressureless gas dynamics systemen_US
dc.subjectTwo-phase flow modelen_US
dc.subjectShadow wave trackingen_US
dc.subjectNon-constant air velocityen_US
dc.subjectEntropy solutionen_US
dc.subjectGeneralized variational principleen_US
dc.subject2024-JAN-WEEK1en_US
dc.subjectTOC-JAN-2024en_US
dc.subject2024en_US
dc.titleExistence of Global Entropy Solution for Eulerian Droplet Models and Two-phase Flow Model with Non-constant Air Velocityen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleJournal of Dynamics and Differential Equationsen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.