Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/8414
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorDesai, Nishita-
dc.contributor.authorSAOJI, PUSHKAR-
dc.date.accessioned2024-01-24T05:28:33Z-
dc.date.available2024-01-24T05:28:33Z-
dc.date.issued2024-01-
dc.identifier.citation65en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/8414-
dc.description.abstractThis thesis delves into the realm of Hidden Valley models, which introduce the intriguing concept of a new gauge group alongside the Standard Model gauge group, connected by a heavy mediator particle. Seeking to discern their signatures at the Large Hadron Collider (LHC), a binary classification MLP (Multi-Layer Perceptron) neural network serves as a key tool for signal discrimination. The introduction of the SIFT algorithm enhances the extraction of dark meson mass scales and discriminating the Hidden Valley jets against ordinary quark or gluon jets. We also introduce other benchmarks to explore sensitivity to heavy and light quark decays of Hidden Valley mesons. The use CNNs, with jet-images as inputs, offers an alternative avenue to study the properties of Hidden Valley jets. This comprehensive analysis unveils the potential to decipher elusive signals of the Hidden Valley.en_US
dc.language.isoenen_US
dc.subjectHidden Valleyen_US
dc.subjectParticleen_US
dc.subjectHigh Energyen_US
dc.subjectDark Matteren_US
dc.subjectCollideren_US
dc.titleCollider signatures for Hidden Valley jetsen_US
dc.typeThesisen_US
dc.description.embargoNo Embargoen_US
dc.type.degreeBS-MSen_US
dc.contributor.departmentDept. of Physicsen_US
dc.contributor.registration20181191en_US
Appears in Collections:MS THESES

Files in This Item:
File Description SizeFormat 
20181191_Pushkar_Saoji_MS_Thesis.pdfMS Thesis5.06 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.