Please use this identifier to cite or link to this item:
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/8421
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Biswas, Indranil | en_US |
dc.contributor.author | Chatterjee, Saikat | en_US |
dc.contributor.author | KOUSHIK, PRAPHULLA | en_US |
dc.contributor.author | Neumann, Frank | en_US |
dc.date.accessioned | 2024-01-30T05:09:12Z | |
dc.date.available | 2024-01-30T05:09:12Z | |
dc.date.issued | 2023-12 | en_US |
dc.identifier.citation | Reviews in Mathematical Physics, 36(03), 2450002. | en_US |
dc.identifier.issn | 0129-055X | en_US |
dc.identifier.issn | 1793-6659 | en_US |
dc.identifier.uri | https://doi.org/10.1142/S0129055X24500028 | en_US |
dc.identifier.uri | http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/8421 | |
dc.description.abstract | This paper presents the infinitesimal prolongation to Riemann–Liouville and Caputo fractional derivatives without the restrictive lower limit fixed in the integrals, when applicated to the transformation group. The properties are presented, and the examples are illustrated along with the symmetry to fractional derivative criteria. | en_US |
dc.language.iso | en | en_US |
dc.publisher | World Scientific Publishing | en_US |
dc.subject | Fractional Lie point symmetry group | en_US |
dc.subject | Fractional infinitesimal prolongation | en_US |
dc.subject | Non local Lie symmetries | en_US |
dc.subject | 2024-JAN-WEEK2 | en_US |
dc.subject | TOC-JAN-2024 | en_US |
dc.subject | 2023 | en_US |
dc.title | Connections on Lie groupoids and Chern–Weil theory | en_US |
dc.type | Article | en_US |
dc.contributor.department | Dept. of Mathematics | en_US |
dc.identifier.sourcetitle | Reviews in Mathematical Physics | en_US |
dc.publication.originofpublisher | Foreign | en_US |
Appears in Collections: | JOURNAL ARTICLES |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.