Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/8421
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBiswas, Indranilen_US
dc.contributor.authorChatterjee, Saikaten_US
dc.contributor.authorKOUSHIK, PRAPHULLAen_US
dc.contributor.authorNeumann, Franken_US
dc.date.accessioned2024-01-30T05:09:12Z
dc.date.available2024-01-30T05:09:12Z
dc.date.issued2023-12en_US
dc.identifier.citationReviews in Mathematical Physics, 36(03), 2450002.en_US
dc.identifier.issn0129-055Xen_US
dc.identifier.issn1793-6659en_US
dc.identifier.urihttps://doi.org/10.1142/S0129055X24500028en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/8421
dc.description.abstractThis paper presents the infinitesimal prolongation to Riemann–Liouville and Caputo fractional derivatives without the restrictive lower limit fixed in the integrals, when applicated to the transformation group. The properties are presented, and the examples are illustrated along with the symmetry to fractional derivative criteria.en_US
dc.language.isoenen_US
dc.publisherWorld Scientific Publishingen_US
dc.subjectFractional Lie point symmetry groupen_US
dc.subjectFractional infinitesimal prolongationen_US
dc.subjectNon local Lie symmetriesen_US
dc.subject2024-JAN-WEEK2en_US
dc.subjectTOC-JAN-2024en_US
dc.subject2023en_US
dc.titleConnections on Lie groupoids and Chern–Weil theoryen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleReviews in Mathematical Physicsen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.