Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/8465
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMandal, Pinaken_US
dc.contributor.authorRoy, Shashank Kumaren_US
dc.contributor.authorAPTE, AMITen_US
dc.date.accessioned2024-02-05T07:27:42Z-
dc.date.available2024-02-05T07:27:42Z-
dc.date.issued2023-09en_US
dc.identifier.citationPhysica D: Nonlinear Phenomena, 451, 133765.en_US
dc.identifier.issn0167-2789en_US
dc.identifier.issn1872-8022en_US
dc.identifier.urihttps://doi.org/10.1016/j.physd.2023.133765en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/8465-
dc.description.abstractUsing the recently developed Sinkhorn algorithm for approximating the Wasserstein distance between probability distributions represented by Monte Carlo samples, we demonstrate exponential filter stability of two commonly used nonlinear filtering algorithms, namely, the particle filter and the ensemble Kalman filter, for deterministic dynamical systems. We also establish numerically a relation between filter stability and filter convergence by showing that the Wasserstein distance between filters with two different initial conditions is proportional to the bias or the RMSE of the filter.en_US
dc.language.isoenen_US
dc.publisherElsevier B.V.en_US
dc.subjectData assimilationen_US
dc.subjectNonlinear filteringen_US
dc.subjectEnKFen_US
dc.subject2023en_US
dc.titleProbing robustness of nonlinear filter stability numerically using Sinkhorn divergenceen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Data Scienceen_US
dc.identifier.sourcetitlePhysica D: Nonlinear Phenomenaen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.