Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/8488
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNAYAK, BHOJKUMARen_US
dc.contributor.authorTHODIKA ABDUL RAAFIK ARATTUen_US
dc.contributor.authorKUMAR, HITESHen_US
dc.contributor.authorTHIMMAPPA, RAVIKUMARen_US
dc.contributor.authorTHOTIYL, MUSTHAFA OTTAKAM en_US
dc.date.accessioned2024-02-12T11:42:21Z
dc.date.available2024-02-12T11:42:21Z
dc.date.issued2024-05en_US
dc.identifier.citationJournal of Colloid and Interface Science, 662, 289-297.en_US
dc.identifier.issn0021-9797en_US
dc.identifier.issn1095-7103en_US
dc.identifier.urihttps://doi.org/10.1016/j.jcis.2024.02.074en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/8488
dc.description.abstractThe mounting global energy demand urges surplus electricity generation. Due to dwindling fossil resources and environmental concerns, shifting from carbon-based fuels to renewables is vital. Though renewables are affordable, their intermittent nature poses supply challenges. In these contexts, aqueous flow batteries (AFBs), are a viable energy storage solution. This study tackles AFBs' energy density and efficiency challenges. Conventional strategies focus on altering molecule’s solubility but overlook interface’s transport kinetics. We show that triggering electrostatic forces at the interface can significantly enhance the mass transport kinetics of redox active molecules by introducing a powerful electrostatic flux over the diffusional flux, thereby exerting a precise directionality on the molecular transport. This approach of controlling the directionality of molecular flux in an all iron redox flow battery amplifies the current and power rating with approximately 140 % enhancement in the energy density.en_US
dc.language.isoenen_US
dc.publisherElsevier B.V.en_US
dc.subjectFlow batteryen_US
dc.subjectModified electrodeen_US
dc.subjectElectrostatic forcesen_US
dc.subjectMass transport kineticsen_US
dc.subjectDirectional molecular fluxen_US
dc.subject2024-FEB-WEEK2en_US
dc.subjectTOC-FEB-2024en_US
dc.subject2024en_US
dc.titleDirectional molecular transport in iron redox flow batteries by interfacial electrostatic forcesen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Chemistryen_US
dc.identifier.sourcetitleJournal of Colloid and Interface Scienceen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.