Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/8503
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHOGADI, AMITen_US
dc.contributor.authorYadav, Surajen_US
dc.date.accessioned2024-02-12T11:50:11Z
dc.date.available2024-02-12T11:50:11Z
dc.date.issued2023-03en_US
dc.identifier.citationJournal of the Institute of Mathematics of Jussieu, 23(03).en_US
dc.identifier.issn1474-7480en_US
dc.identifier.issn1475-3030en_US
dc.identifier.urihttps://doi.org/10.1017/S1474748023000087en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/8503
dc.description.abstractIn this note, we prove that the moduli stack of vector bundles on a curve with a fixed determinant is A(1)-connected. We obtain this result by classifying vector bundles on a curve up to A(1) concordance. Consequently, we classify P-n-bundles on a curve up to A(1)-weak equivalence, extending a result in [3] of Asok-Morel. We also give an explicit example of a variety which is A(1)-h-cobordant to a projective bundle over P-2 but does not have the structure of a projective bundle over P-2, thus answering a question of Asok-Kebekus-Wendt [2].en_US
dc.language.isoenen_US
dc.publisherCambridge University Pressen_US
dc.subject𝔸1-connectednessen_US
dc.subjectModuli of vector bundlesen_US
dc.subject𝔸1-concordanceen_US
dc.subject2023en_US
dc.titleA1-CONNECTEDNESS OF MODULI OF VECTOR BUNDLES ON A CURVEen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleJournal of the Institute of Mathematics of Jussieuen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.