Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/8845
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorVan Tuyl, Adam-
dc.contributor.advisorJayanthan, A.V.-
dc.contributor.authorSIVAKUMAR, ANIKETH-
dc.date.accessioned2024-05-17T12:16:19Z-
dc.date.available2024-05-17T12:16:19Z-
dc.date.issued2024-05-
dc.identifier.citation102en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/8845-
dc.description.abstractConsider a finite simple graph G. One can associate an ideal to the edges of this graph, called its binomial edge ideal. Many homological invariants, such as the Betti numbers, Castelnuovo-Mumford regularity (reg) and the projective dimension (pd) of these ideals are widely studied. For binomial edge ideals of graphs, these invariants are often intimately related to graph-theoretic notions such as connectivity, free vertices and so on. In this thesis, we study the method of Betti splittings applied to binomial edge ideals. We give some examples of Betti splittings and introduce the notion of a partial Betti splitting. We demonstrate that breaking off a vertex and its incident edges from the graph results in a partial Betti splitting of the associated binomial edge ideal. A similar study is also done to obtain a partial Betti splitting for the initial ideal of a binomial edge ideal. We also prove new bounds for some homological invariants of the binomial edge ideal and explore some of their implications.en_US
dc.description.sponsorshipMITACS Globalink Research Award, INSPIRE SHEen_US
dc.language.isoenen_US
dc.subjectCommutative Algebraen_US
dc.subjectCombinatoricsen_US
dc.titleSplittings of Binomial Edge Idealsen_US
dc.typeThesisen_US
dc.description.embargoNo Embargoen_US
dc.type.degreeBS-MSen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.contributor.registration20191046en_US
Appears in Collections:MS THESES

Files in This Item:
File Description SizeFormat 
20191046_Aniketh_Sivakumar_MS_Thesis.pdfMS Thesis914.93 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.