Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/8953
Full metadata record
DC FieldValueLanguage
dc.contributor.authorANANTH, SUDARSHANen_US
dc.contributor.authorBHAVE, NIPUNen_US
dc.contributor.authorPANDEY, CHETANen_US
dc.contributor.authorPANT, SAURABHen_US
dc.date.accessioned2024-05-29T07:21:32Z
dc.date.available2024-05-29T07:21:32Z
dc.date.issued2024-06en_US
dc.identifier.citationPhysics Letters B, 853, 138704.en_US
dc.identifier.issn1873-2445en_US
dc.identifier.issn0370-2693en_US
dc.identifier.urihttps://doi.org/10.1016/j.physletb.2024.138704en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/8953
dc.description.abstractWe derive cubic interaction vertices for a class of higher-derivative theories involving three arbitrary integer spin fields. This derivation uses the requirement of closure of the Poincaré algebra in four-dimensional flat spacetime. We find two varieties of permitted structures at the cubic level and eliminate one variety, which is proportional to the equations of motion, using suitable field redefinitions. We then consider soft theorems for field theories with these higher-derivative interactions and construct amplitudes in these theories using the inverse-soft approach.en_US
dc.language.isoenen_US
dc.publisherElsevier B.V.en_US
dc.subjectPhysicsen_US
dc.subject2024-MAY-WEEK1en_US
dc.subjectTOC-MAY-2024en_US
dc.titleDeriving interaction vertices in higher derivative theoriesen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Physicsen_US
dc.identifier.sourcetitlePhysics Letters Ben_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.