Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/8990
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBANERJEE, DEBARGHAen_US
dc.contributor.authorMerel, Loïcen_US
dc.date.accessioned2024-06-21T05:41:29Z-
dc.date.available2024-06-21T05:41:29Z-
dc.date.issued2024-05en_US
dc.identifier.citationCanadian Journal of Mathematicsen_US
dc.identifier.issn0008-414Xen_US
dc.identifier.issn1496-4279en_US
dc.identifier.urihttps://doi.org/10.4153/S0008414X24000476en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/8990-
dc.description.abstractFor N integer ≥1, K. Murty and D. Ramakrishnan defined the Nth Heisenberg curve, as the compactified quotient X′N of the upper half-plane by a certain non-congruence subgroup of the modular group. They ask whether the Manin–Drinfeld principle holds, namely, if the divisors supported on the cusps of those curves are torsion in the Jacobian. We give a model over Z[μN,1/N] of the Nth Heisenberg curve as covering of the Nth Fermat curve. We show that the Manin–Drinfeld principle holds for N=3, but not for N=5. We show that the description by generator and relations due to Rohrlich of the cuspidal subgroup of the Fermat curve is explained by the Heisenberg covering, together with a higher covering of a similar nature. The curves XN and the classical modular curves X(n), for n even integer, both dominate X(2), which produces a morphism between Jacobians JN→J(n). We prove that the latter has image 0 or an elliptic curve of j-invariant 0. In passing, we give a description of the homology of X′N.en_US
dc.language.isoenen_US
dc.publisherCambridge University Pressen_US
dc.subjectFermat’s curvesen_US
dc.subjectModular symbolsen_US
dc.subjectHeisenberg curvesen_US
dc.subject2024en_US
dc.subject2024-JUN-WEEK1en_US
dc.subjectTOC-JUN-2024en_US
dc.titleThe Heisenberg covering of the Fermat curveen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleCanadian Journal of Mathematicsen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.