Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9057
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBANERJEE, DEBARGHAen_US
dc.contributor.authorMajumder, Priyankaen_US
dc.date.accessioned2024-08-28T05:17:56Z
dc.date.available2024-08-28T05:17:56Z
dc.date.issued2024-08en_US
dc.identifier.citationRamanujan Journalen_US
dc.identifier.issn1382-4090en_US
dc.identifier.issn1572-9303en_US
dc.identifier.urihttps://doi.org/10.1007/s11139-024-00931-5en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9057
dc.description.abstractIn this article, we are interested in modular forms with non-vanishing central critical values and linear independence of Fourier coefficients of modular forms. The main ingredient is a generalization of a theorem due to VanderKam to modular symbols of higher weights. We prove that for sufficiently large primes p, Hecke operators T-1,T-2,& mldr;,T-D act linearly independently on the winding elements inside the space of weight 2k cuspidal modular symbol S-2k(Gamma(0)(p)) with k >= 1 for D-2 << p. This gives a bound on the number of newforms with non-vanishing arithmetic L-functions at their central critical points and linear independence on the reductions of these modular forms for prime modulo l not equal p.en_US
dc.language.isoenen_US
dc.publisherSpringer Natureen_US
dc.subjectModular curvesen_US
dc.subjectHecke operatorsen_US
dc.subjectCentral L-valuesen_US
dc.subjectModular symbolsen_US
dc.subject2024-AUG-WEEK2en_US
dc.subjectTOC-AUG-2024en_US
dc.titleModular forms with non-vanishing central values and linear independence of Fourier coefficientsen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleRamanujan Journalen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.