Please use this identifier to cite or link to this item:
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9057
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | BANERJEE, DEBARGHA | en_US |
dc.contributor.author | Majumder, Priyanka | en_US |
dc.date.accessioned | 2024-08-28T05:17:56Z | |
dc.date.available | 2024-08-28T05:17:56Z | |
dc.date.issued | 2024-08 | en_US |
dc.identifier.citation | Ramanujan Journal | en_US |
dc.identifier.issn | 1382-4090 | en_US |
dc.identifier.issn | 1572-9303 | en_US |
dc.identifier.uri | https://doi.org/10.1007/s11139-024-00931-5 | en_US |
dc.identifier.uri | http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9057 | |
dc.description.abstract | In this article, we are interested in modular forms with non-vanishing central critical values and linear independence of Fourier coefficients of modular forms. The main ingredient is a generalization of a theorem due to VanderKam to modular symbols of higher weights. We prove that for sufficiently large primes p, Hecke operators T-1,T-2,& mldr;,T-D act linearly independently on the winding elements inside the space of weight 2k cuspidal modular symbol S-2k(Gamma(0)(p)) with k >= 1 for D-2 << p. This gives a bound on the number of newforms with non-vanishing arithmetic L-functions at their central critical points and linear independence on the reductions of these modular forms for prime modulo l not equal p. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer Nature | en_US |
dc.subject | Modular curves | en_US |
dc.subject | Hecke operators | en_US |
dc.subject | Central L-values | en_US |
dc.subject | Modular symbols | en_US |
dc.subject | 2024-AUG-WEEK2 | en_US |
dc.subject | TOC-AUG-2024 | en_US |
dc.title | Modular forms with non-vanishing central values and linear independence of Fourier coefficients | en_US |
dc.type | Article | en_US |
dc.contributor.department | Dept. of Mathematics | en_US |
dc.identifier.sourcetitle | Ramanujan Journal | en_US |
dc.publication.originofpublisher | Foreign | en_US |
Appears in Collections: | JOURNAL ARTICLES |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.