Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9061
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDewan, Arshiyaen_US
dc.contributor.authorJAIN, CHARUen_US
dc.contributor.authorDas, Mayashreeen_US
dc.contributor.authorTripathi, Ashutoshen_US
dc.contributor.authorSHARMA, AJAY KUMARen_US
dc.contributor.authorSINGH, HARSHITen_US
dc.contributor.authorMalhotra, Nitishen_US
dc.contributor.authorSeshasayee, Aswin Sai Narainen_US
dc.contributor.authorCHAKRAPANI, HARINATHen_US
dc.contributor.authorSingh, Amiten_US
dc.date.accessioned2024-08-28T05:17:57Z
dc.date.available2024-08-28T05:17:57Z
dc.date.issued2024-09en_US
dc.identifier.citationRedox Biology, 75, 103285en_US
dc.identifier.issn2213-2317en_US
dc.identifier.urihttps://doi.org/10.1016/j.redox.2024.103285en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9061
dc.description.abstractThe ability of Mycobacterium tuberculosis (Mtb) to tolerate nitric oxide (•NO) and superoxide (O2•−) produced by phagocytes contributes to its success as a human pathogen. Recombination of •NO and O2•− generates peroxynitrite (ONOO−), a potent oxidant produced inside activated macrophages causing lethality in diverse organisms. While the response of Mtb toward •NO and O2•− is well established, how Mtb responds to ONOO− remains unclear. Filling this knowledge gap is important to understand the persistence mechanisms of Mtb during infection. We synthesized a series of compounds that generate both •NO and O2•−, which should combine to produce ONOO−. From this library, we identified CJ067 that permeates Mtb to reliably enhance intracellular ONOO− levels. CJ067-exposed Mtb strains, including multidrug-resistant (MDR) and extensively drug-resistant (XDR) clinical isolates, exhibited dose-dependent, long-lasting oxidative stress and growth inhibition. In contrast, Mycobacterium smegmatis (Msm), a fast-growing, non-pathogenic mycobacterial species, maintained redox balance and growth in response to intracellular ONOO−. RNA-sequencing with Mtb revealed that CJ067 induces antioxidant machinery, sulphur metabolism, metal homeostasis, and a 4Fe–4S cluster repair pathway (suf operon). CJ067 impaired the activity of the 4Fe–4S cluster-containing TCA cycle enzyme, aconitase, and diminished bioenergetics of Mtb. Work with Mtb strains defective in SUF and IscS involved in Fe–S cluster biogenesis pathways showed that both systems cooperatively protect Mtb from intracellular ONOO− in vitro and inducible nitric oxide synthase (iNOS)-dependent growth inhibition during macrophage infection. Thus, Mtb is uniquely sensitive to intracellular ONOO− and targeting Fe–S cluster homeostasis is expected to promote iNOS-dependent host immunity against tuberculosis (TB).en_US
dc.language.isoenen_US
dc.publisherElsevier B.V.en_US
dc.subjectPeroxynitriteen_US
dc.subjectTuberculosisen_US
dc.subjectFe–S clustersen_US
dc.subjectRedoxen_US
dc.subjectBioenergeticsen_US
dc.subject2024-AUG-WEEK3en_US
dc.subjectTOC-AUG-2024en_US
dc.titleIntracellular peroxynitrite perturbs redox balance, bioenergetics, and Fe–S cluster homeostasis in Mycobacterium tuberculosisen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Chemistryen_US
dc.identifier.sourcetitleRedox Biologyen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.