Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/906
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorRAGHURAM, A.en_US
dc.contributor.authorSACHDEVA, GUNJAen_US
dc.date.accessioned2018-04-26T03:52:19Z
dc.date.available2018-04-26T03:52:19Z
dc.date.issued2017-08en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/906
dc.description.abstractWe prove an algebraicity result for all the critical values of L-functions for GL3 × GL1 over a totally real field, and a CM field separately. These L- functions are attached to a cohomological cuspidal automorphic representation of GL3 having cohomology with respect to a general coefficient system and an algebraic Hecke character of GL1. This is derived from the theory of Rankin{Selberg L-functions attached to pairs of automorphic representations on GL3 × GL2. Our results are a generalization and refinement of the results of Mahnkopf [26] and Geroldinger [14]. The resulting expressions for critical values of the Rankin-Selberg L-functions are compatible with Deligne's conjecture. As an application, we obtain algebraicity results for symmetric square L-functions.en_US
dc.language.isoenen_US
dc.subjectMathematicsen_US
dc.subjectL-functionsen_US
dc.subjectNumber fielden_US
dc.titleCritical values of L-functions for GL3 × GL1 over a number fielden_US
dc.typeThesisen_US
dc.publisher.departmentDept. of Mathematicsen_US
dc.type.degreePh.Den_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.contributor.registration20123209en_US
Appears in Collections:PhD THESES

Files in This Item:
File Description SizeFormat 
20123209_Gunjan_Sachdeva.pdf620.92 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.