Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9078
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRAJPUT, PARIKSHIT KUMARen_US
dc.contributor.authorSALUNKHE, PARASHURAMAen_US
dc.contributor.authorSARMA, MANMAYURIen_US
dc.contributor.authorBASU, MEGHASREEen_US
dc.contributor.authorGopal, Animeshen_US
dc.contributor.authorJoshi, Aprajitaen_US
dc.contributor.authorSHINGOTE, AJINKYA SUNDARNATHen_US
dc.contributor.authorSaha, Surajiten_US
dc.contributor.authorRAHMAN, ATIKURen_US
dc.contributor.authorNAG, ANGSHUMANen_US
dc.date.accessioned2024-09-20T04:03:35Z
dc.date.available2024-09-20T04:03:35Z
dc.date.issued2024-09en_US
dc.identifier.citationSmallen_US
dc.identifier.issn1613-6810en_US
dc.identifier.issn1613-6829en_US
dc.identifier.urihttps://doi.org/10.1002/smll.202406735en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9078
dc.description.abstractTypical layered 2D A2PbX4 (A: organic ammonium cation, X: Br, I) perovskites undergo irreversible decomposition at high temperatures. Can they be designed to melt at lower temperatures without decomposition? Which thermodynamic parameter drive the melting of layered perovskites? These questions are addressed by considering the melt of A2PbX4 as a mixture of ions (like ionic liquids), and hypothesized that the increase in the structural entropy of fusion (ΔSfus) will be the driving force to decrease their melting temperature. Then to increase structural ΔSfus, A-site cations are designed that are rigid in the solid crystal, and become flexible in the molten state. Different tail groups in the A-site cations form hydrogen-, halogen- and even covalent bonding-interactions, making the cation-layer rigid in the solid form. Additionally, the rotation of ─NH3+ head group is suppressed by replacing ─H with ─CH3, further enhancing the rigidity. Six A2PbX4 crystals with high ΔSfus and low melting temperatures are prepared using this approach. For example, [I−(CH2)3−NH2(CH3)]2PbI4 reversibly melts at 388 K (decomposition temperature 500 K), and then recrystallizes back upon cooling. Consequently, melt-pressed films are grown demonstrating the solvent- and vacuum-free perovskite films for future optoelectronic devices.en_US
dc.language.isoenen_US
dc.publisherWileyen_US
dc.subjectHybrid perovskitesen_US
dc.subjectPhotodetectoren_US
dc.subjectReversible meltingen_US
dc.subjectStructural entropy of fusionen_US
dc.subjectSolvent- and vacuum-free filmsen_US
dc.subject2024en_US
dc.subject2024-SEP-WEEK2en_US
dc.subjectTOC-SEP-2024en_US
dc.titleEntropy-Driven Reversible Melting and Recrystallization of Layered Hybrid Perovskitesen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Chemistryen_US
dc.contributor.departmentDept. of Physicsen_US
dc.identifier.sourcetitleSmallen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.