Please use this identifier to cite or link to this item:
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9109
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | CHORWADWALA, ANISA | en_US |
dc.date.accessioned | 2024-09-30T08:55:02Z | |
dc.date.available | 2024-09-30T08:55:02Z | |
dc.date.issued | 2024-08 | en_US |
dc.identifier.citation | Blackboard, 7, 109-114. | en_US |
dc.identifier.issn | 0004-9727 | en_US |
dc.identifier.issn | 1755-1633 | en_US |
dc.identifier.uri | https://www.mtai.org.in/wp-content/uploads/2024/09/blackboard-issue-7.pdf | en_US |
dc.identifier.uri | http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9109 | |
dc.description.abstract | Recall that, for two vectors x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) in R n , their dot product x · y is defined as x1y1 + x2y2 + · · · + xnyn. Here, n ≥ 1 is a natural number. Note that when n = 1, this dot product is just the product of the two real numbers x and y. Consider the Euclidean space E n := (R n , ·), that is, our usual finite dimensional vector space R n equipped with the dot product. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Mathematics Teachers’ Association (India) | en_US |
dc.subject | Mathematics | en_US |
dc.subject | 2024 | en_US |
dc.subject | 2024-SEP-WEEK3 | en_US |
dc.subject | TOC-SEP-2024 | en_US |
dc.title | We are what we think we are! | en_US |
dc.type | Article | en_US |
dc.contributor.department | Dept. of Mathematics | en_US |
dc.identifier.sourcetitle | Bulletin of Mathematics Teachers' Association | en_US |
dc.publication.originofpublisher | Foreign | en_US |
Appears in Collections: | JOURNAL ARTICLES |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.