Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9141
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKhan, Bivasen_US
dc.contributor.authorPODDAR, MAINAK en_US
dc.date.accessioned2024-10-29T06:44:39Z
dc.date.available2024-10-29T06:44:39Z
dc.date.issued2025-01en_US
dc.identifier.citationJournal of Pure and Applied Algebra, 229(01), 107816.en_US
dc.identifier.issn1873-1376en_US
dc.identifier.issn0022-4049en_US
dc.identifier.urihttps://doi.org/10.1016/j.jpaa.2024.107816en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9141
dc.description.abstractLet X be a complete variety over an algebraically closed field k of characteristic zero, equipped with an action of an algebraic group G. Let H be a reductive group. We study the notion of G-connection on a principal H-bundle. We give necessary and sufficient criteria for the existence of G-connections extending the Atiyah-Weil type criterion for holomorphic connections obtained by Azad and Biswas. We also establish a relationship between the existence of G-connection and equivariant structure on a principal H-bundle, under the assumption that G is semisimple and simply connected. These results have been obtained by Biswas et al. when the underlying variety is smooth.en_US
dc.language.isoenen_US
dc.publisherElsevier B.V.en_US
dc.subjectPrincipal bundleen_US
dc.subjectGroup actionen_US
dc.subjectComplete varietyen_US
dc.subjectG-connectionen_US
dc.subjectToric varietyen_US
dc.subject2025en_US
dc.subject2024-OCT-WEEK2en_US
dc.subjectTOC-OCT-2024en_US
dc.titleG-connections on principal bundles over complete G-varietiesen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleJournal of Pure and Applied Algebraen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.