Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9145
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBASU, RABEYAen_US
dc.contributor.authorMATHEW, MARIA A.en_US
dc.date.accessioned2024-10-29T06:44:40Z
dc.date.available2024-10-29T06:44:40Z
dc.date.issued2024-10en_US
dc.identifier.citationTransformation Groupsen_US
dc.identifier.issn1083-4362en_US
dc.identifier.issn1531-586Xen_US
dc.identifier.urihttps://doi.org/10.1007/s00031-024-09883-yen_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9145
dc.description.abstractThe elementary action of symplectic and orthogonal groups on unimodular rows of length 2n is transitive for 2n >= max(4,d+2) in the symplectic case, and 2n >= max(6,2d+4) in the orthogonal case, over monoid rings R[M], where R is a commutative noetherian ring of dimension d, and M is commutative cancellative torsion free monoid. As a consequence, one gets the surjective stabilization bound for the K-1 for classical groups. This is an extension of J. Gubeladze's results for linear groupsen_US
dc.language.isoenen_US
dc.publisherSpringer Natureen_US
dc.subjectMonoid ringen_US
dc.subjectClassical groupen_US
dc.subjectUnimodular rowen_US
dc.subjectElementary actionen_US
dc.subjectMilnor patchingen_US
dc.subjectCancellative monoiden_US
dc.subjectK-1-stabilityen_US
dc.subject2024en_US
dc.subject2024-OCT-WEEK2en_US
dc.subjectTOC-OCT-2024 en_US
dc.titleElementary Action of Classical Groups on Unimodular Rows Over Monoid Ringsen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleTransformation Groupsen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.