Please use this identifier to cite or link to this item:
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9183
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Balasubramanian, Kumar | en_US |
dc.contributor.author | KAIPA, KRISHNA | en_US |
dc.contributor.author | Khurana, Himanshi | en_US |
dc.date.accessioned | 2024-11-22T06:10:46Z | - |
dc.date.available | 2024-11-22T06:10:46Z | - |
dc.date.issued | 2025-01 | en_US |
dc.identifier.citation | Linear Algebra and its Applications, 704, 35-57. | en_US |
dc.identifier.issn | 0024-3795 | en_US |
dc.identifier.issn | 1873-1856 | en_US |
dc.identifier.uri | https://doi.org/10.1016/j.laa.2024.10.011 | en_US |
dc.identifier.uri | http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9183 | - |
dc.description.abstract | Let F be the finite field of order q and M(n, n, r, F ) be the set of n x n matrices of rank r over the field F . For alpha E F and A E M(n, n, F ), let Z alpha A,r = {X X E M(n, n, r, F ) Tr(AX) AX ) = alpha } . In this article, we solve the problem of determining the cardinality of Z alpha A,r . We also solve the generalization of the problem to rectangular matrices. (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier B.V. | en_US |
dc.subject | Rank | en_US |
dc.subject | Trace | en_US |
dc.subject | Cardinality | en_US |
dc.subject | Generating function | en_US |
dc.subject | 2024-NOV-WEEK3 | en_US |
dc.subject | TOC-NOV-2024 | en_US |
dc.subject | 2025 | en_US |
dc.title | On the cardinality of matrices with prescribed rank and partial trace over a finite field | en_US |
dc.type | Article | en_US |
dc.contributor.department | Dept. of Mathematics | en_US |
dc.identifier.sourcetitle | Linear Algebra and its Applications | en_US |
dc.publication.originofpublisher | Foreign | en_US |
Appears in Collections: | JOURNAL ARTICLES |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.