Please use this identifier to cite or link to this item:
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9185
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | BISWAS, NIRJAN | en_US |
dc.contributor.author | Kumar, Rohit | en_US |
dc.date.accessioned | 2024-11-22T06:10:46Z | - |
dc.date.available | 2024-11-22T06:10:46Z | - |
dc.date.issued | 2025-03 | en_US |
dc.identifier.citation | Journal of Mathematical Analysis and Application, 543(02), Part 2 | en_US |
dc.identifier.issn | 0022-247X | en_US |
dc.identifier.issn | 1096-0813 | en_US |
dc.identifier.uri | https://doi.org/10.1016/j.jmaa.2024.128935 | en_US |
dc.identifier.uri | http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9185 | - |
dc.description.abstract | In this article, for N >= 2, s is an element of (1, 2), p is an element of (1, N/s), sigma = s - 1and a is an element of [0, N-sp/2), we establish an isometric isomorphism between the higher order fractional weighted Beppo-Levi spaceD-a(s,p) (R-N) := <((CCR)-R-infinity(N))over bar>([center dot]s, p, a)where [u] s,p,a := (integral integral(RN x RN) |del u(x)- del u(y)|(p)/|x - y|(N+ sigma p) dx|x|(a) dy/|y|(a))(p),and higher order fractional weighted homogeneous space (W) over circle (s,p)(a) (R-N) := {u is an element of L-a(ps)*(R-N) : | en_US |
dc.description.abstract | del u | en_US |
dc.description.abstract | (Lap sigma*(RN)) + [u](s ,p,a) < infinity}with the weighted Lebesgue norm | en_US |
dc.description.abstract | u | en_US |
dc.description.abstract | (Lap sigma*(RN)) := integral(RN) |u(x)|(p)alpha*/|x|2ap alpha*/p dx) 1/p alpha*, where p alpha* = Np/N - alpha p for alpha = s, sigma. To achieve this, we prove that C-c(infinity)(R-N) is dense in (W) over circle (s,p)(a) (R-N) with respect to [center dot](s,p,a), and [center dot] (s,p,a) is an equivalent norm on (W) over circle (s,p)(a) (R-N). Further, we obtain a finer embedding of D-a(s,p)(R-N) into the Lorentz space L Np/N- sp-2a, p(R-N), where L Np/N- sp-2a, p(R-N) not subset of L-a(ps)*(R-N). (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier B.V. | en_US |
dc.subject | Higher order fractional weighted Sobolev spaces | en_US |
dc.subject | Density of smooth functions with compact support | en_US |
dc.subject | Equivalent norms | en_US |
dc.subject | Lorentz-Sobolev embeddings | en_US |
dc.subject | 2025 | en_US |
dc.title | Higher order fractional weighted homogeneous spaces: Characterization and finer embeddings | en_US |
dc.type | Article | en_US |
dc.contributor.department | Dept. of Mathematics | en_US |
dc.identifier.sourcetitle | Journal of Mathematical Analysis and Application | en_US |
dc.publication.originofpublisher | Foreign | en_US |
Appears in Collections: | JOURNAL ARTICLES |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.