Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9185
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBISWAS, NIRJANen_US
dc.contributor.authorKumar, Rohiten_US
dc.date.accessioned2024-11-22T06:10:46Z-
dc.date.available2024-11-22T06:10:46Z-
dc.date.issued2025-03en_US
dc.identifier.citationJournal of Mathematical Analysis and Application, 543(02), Part 2en_US
dc.identifier.issn0022-247Xen_US
dc.identifier.issn1096-0813en_US
dc.identifier.urihttps://doi.org/10.1016/j.jmaa.2024.128935en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9185-
dc.description.abstractIn this article, for N >= 2, s is an element of (1, 2), p is an element of (1, N/s), sigma = s - 1and a is an element of [0, N-sp/2), we establish an isometric isomorphism between the higher order fractional weighted Beppo-Levi spaceD-a(s,p) (R-N) := <((CCR)-R-infinity(N))over bar>([center dot]s, p, a)where [u] s,p,a := (integral integral(RN x RN) |del u(x)- del u(y)|(p)/|x - y|(N+ sigma p) dx|x|(a) dy/|y|(a))(p),and higher order fractional weighted homogeneous space (W) over circle (s,p)(a) (R-N) := {u is an element of L-a(ps)*(R-N) :en_US
dc.description.abstractdel uen_US
dc.description.abstract(Lap sigma*(RN)) + [u](s ,p,a) < infinity}with the weighted Lebesgue normen_US
dc.description.abstractuen_US
dc.description.abstract(Lap sigma*(RN)) := integral(RN) |u(x)|(p)alpha*/|x|2ap alpha*/p dx) 1/p alpha*, where p alpha* = Np/N - alpha p for alpha = s, sigma. To achieve this, we prove that C-c(infinity)(R-N) is dense in (W) over circle (s,p)(a) (R-N) with respect to [center dot](s,p,a), and [center dot] (s,p,a) is an equivalent norm on (W) over circle (s,p)(a) (R-N). Further, we obtain a finer embedding of D-a(s,p)(R-N) into the Lorentz space L Np/N- sp-2a, p(R-N), where L Np/N- sp-2a, p(R-N) not subset of L-a(ps)*(R-N). (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.en_US
dc.language.isoenen_US
dc.publisherElsevier B.V.en_US
dc.subjectHigher order fractional weighted Sobolev spacesen_US
dc.subjectDensity of smooth functions with compact supporten_US
dc.subjectEquivalent normsen_US
dc.subjectLorentz-Sobolev embeddingsen_US
dc.subject2025en_US
dc.titleHigher order fractional weighted homogeneous spaces: Characterization and finer embeddingsen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleJournal of Mathematical Analysis and Applicationen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.