Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9186
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSangeetha, C. K.en_US
dc.contributor.authorJagadish, Kusumaen_US
dc.contributor.authorBhatt, Himanshuen_US
dc.contributor.authorJADHAV, YOGESHen_US
dc.contributor.authorRondiya, Sachin R.en_US
dc.date.accessioned2024-11-22T06:10:46Z-
dc.date.available2024-11-22T06:10:46Z-
dc.date.issued2024-10en_US
dc.identifier.citationJournal of Physical Chemistry Cen_US
dc.identifier.issn1932-7447en_US
dc.identifier.issn1932-7455en_US
dc.identifier.urihttps://doi.org/10.1021/acs.jpcc.4c03886en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9186-
dc.description.abstractIn this work, we synthesize pure covellite copper sulfide (CuS) nanostructures using a hydrothermal approach, adjusting the copper stoichiometry to investigate their structural, optical, and electrochemical properties. Time-resolved photoluminescence reveals nanosecond-range excited state lifetimes, while femtosecond transient absorption spectroscopy shows that hole absorption dominates over photoinduced electrons with relaxation kinetics influenced by copper stoichiometry. We examine the impact on band edges and stability through cyclic voltammetry, finding that the optical band gap of the CuS nanostructures aligns closely with electrochemical values, approximately 1.9 to 1.8 eV. Ultraviolet photoelectron spectroscopy confirms changes in the valence band maxima, with varying stoichiometry elevating the valence band edge, indicating a near-metallic nature for CuS. Our study enables precise engineering of these nanostructures, positioning CuS as a promising low-cost material for energy harvesting and optoelectronic applications, including photovoltaics, photocatalysis, and energy storage.en_US
dc.language.isoenen_US
dc.publisherAmerican Chemical Societyen_US
dc.subjectCopperen_US
dc.subjectElectrical conductivityen_US
dc.subjectKineticsen_US
dc.subjectMathematical methodsen_US
dc.subjectNanostructuresen_US
dc.subject2024-NOV-WEEK3en_US
dc.subjectTOC-NOV-2024en_US
dc.subject2024en_US
dc.titleUnveiling Electronic Structure, Band Alignment, and Charge Carrier Kinetics of Copper Sulfideen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Physicsen_US
dc.identifier.sourcetitleJournal of Physical Chemistry Cen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.