Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9187
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMONDAL, ABHISHEKen_US
dc.contributor.authorMONDAL, DEBASHISen_US
dc.contributor.authorSarkar, Susmitaen_US
dc.contributor.authorSHIVPUJE, UMESHen_US
dc.contributor.authorMondal, Jagannathen_US
dc.contributor.authorTALUKDAR, PINAKIen_US
dc.date.accessioned2024-11-22T06:10:46Z-
dc.date.available2024-11-22T06:10:46Z-
dc.date.issued2024-08en_US
dc.identifier.citationAngewandte Chemie International Edition.en_US
dc.identifier.issn1433-7851en_US
dc.identifier.issn1521-3773en_US
dc.identifier.urihttps://doi.org/10.1002/anie.202415510en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9187-
dc.description.abstractNature has ingeniously developed specialized water transporters that effectively reject ions, including protons, while transporting water across membranes. These natural water channels, known as aquaporins (AQPs), have inspired the creation of Artificial Water Channels (AWCs). However, replicating superfast water transport with synthetic molecular structures that exclude salts and protons is a challenging task. This endeavor demands the coexistence of a suitable water-binding site and a selective filter for precise water transportation. Here, we present small-molecule hydrazides 1 b–1 d that self-assemble into a rosette-type nanochannel assembly through intermolecular hydrogen bonding and π-π stacking interactions, and selectively transport water molecules across lipid bilayer membranes. The experimental analysis demonstrates notable permeability rates for the 1 c derivative, enabling approximately 3.18×108 water molecules to traverse the channel per second. This permeability rate is about one order of magnitude lower than that of AQPs. Of particular significance, the 1 c ensures exclusive passage of water molecules while effectively blocking salts and protons. MD simulation studies confirmed the stability and water transport properties of the water channel assembly inside the bilayer membranes at ambient conditions.en_US
dc.language.isoenen_US
dc.publisherWileyen_US
dc.subjectWater channelen_US
dc.subjectSupramolecular channelen_US
dc.subjectWater transporten_US
dc.subjectHydrazideen_US
dc.subjectSalt exclusionen_US
dc.subject2024-NOV-WEEK3en_US
dc.subjectTOC-NOV-2024en_US
dc.subject2024en_US
dc.titleSelf-Assembled Hydrazide-Based Nanochannels: Efficient Water Translocation and Salt Rejectionen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Chemistryen_US
dc.identifier.sourcetitleAngewandte Chemie International Editionen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.