Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9240
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPANJA, SAIKATen_US
dc.contributor.authorSINGH, ANUPAMen_US
dc.date.accessioned2024-12-20T10:38:12Z-
dc.date.available2024-12-20T10:38:12Z-
dc.date.issued2024-12en_US
dc.identifier.citationIsrael Journal of Mathematicsen_US
dc.identifier.issn0021-2172en_US
dc.identifier.issn1565-8511en_US
dc.identifier.urihttps://doi.org/10.1007/s11856-024-2694-xen_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9240-
dc.description.abstractFor an integer M ≥ 2 and a finite group G, an element α ∈ G is called an M-th power if it satisfies AM = α for some A ∈ G. In this article, we will deal with the case when G is a finite symplectic or orthogonal group over a field of odd order q. We introduce the notion of M*-power SRIM polynomials. This, amalgamated with the concept of M-power polynomial, we provide the complete classification of the conjugacy classes of regular semisimple, semisimple, cyclic and regular elements in G, which are M-th powers, when (M, q) = 1. The approach here is of generating functions, as worked on by Jason Fulman, Peter M. Neumann, and Cheryl Praeger in the memoir “A generating function approach to the enumeration of matrices in classical groups over finite fields”. As a byproduct, we obtain the corresponding probabilities, in terms of generating functions.en_US
dc.language.isoenen_US
dc.publisherSpringer Natureen_US
dc.subjectCycle Indexesen_US
dc.subjectWord Mapsen_US
dc.subject2024-DEC-WEEK2en_US
dc.subjectTOC-DEC-2024en_US
dc.subject2024en_US
dc.titlePowers in finite orthogonal and symplectic groups: A generating function approachen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleIsrael Journal of Mathematicsen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.