Please use this identifier to cite or link to this item:
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9291
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | De Bruyn, Bart | en_US |
dc.contributor.author | PRADHAN, PUSPENDU | en_US |
dc.contributor.author | Sahoo, Binod Kumar | en_US |
dc.date.accessioned | 2025-01-31T06:28:28Z | |
dc.date.available | 2025-01-31T06:28:28Z | |
dc.date.issued | 2025-01 | en_US |
dc.identifier.citation | Designs, Codes and Cryptography | en_US |
dc.identifier.issn | 0925-1022 | en_US |
dc.identifier.issn | 1573-7586 | en_US |
dc.identifier.uri | https://doi.org/10.1007/s10623-024-01559-8 | en_US |
dc.identifier.uri | http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9291 | |
dc.description.abstract | For a set L of lines of PG(n, q), a set X of points of PG(n, q) is called an L-blocking set if each line of L contains at least one point of X. Consider a possibly singular quadric Q of PG(n, q) and denote by S (respectively, T) the set of all lines of PG(n, q) meeting Q in 2 (respectively, 1 or q + 1) points. For L is an element of{S, T. S}, we find the minimal cardinality of an L-blocking set of PG(n, q) and determine all L-blocking sets of that minimal cardinality. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer Nature | en_US |
dc.subject | Projective space | en_US |
dc.subject | Blocking set | en_US |
dc.subject | Conic | en_US |
dc.subject | Quadric | en_US |
dc.subject | Cone | en_US |
dc.subject | Secant line | en_US |
dc.subject | Tangent line | en_US |
dc.subject | 2025-JAN-WEEK1|TOC-JAN-2025 | en_US |
dc.subject | 2025 | en_US |
dc.title | Blocking sets of secant and tangent lines with respect to a quadric of PG(n, q) | en_US |
dc.type | Article | en_US |
dc.contributor.department | Dept. of Mathematics | en_US |
dc.identifier.sourcetitle | Designs, Codes and Cryptography | en_US |
dc.publication.originofpublisher | Foreign | en_US |
Appears in Collections: | JOURNAL ARTICLES |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.