Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9418
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBHATNAGAR,ANJALIen_US
dc.contributor.authorBORAH,DIGANTAen_US
dc.date.accessioned2025-04-01T05:14:54Z
dc.date.available2025-04-01T05:14:54Z
dc.date.issued2025-03en_US
dc.identifier.citationJournal of Geometric Analysis, 35, 128.en_US
dc.identifier.issn1559-002Xen_US
dc.identifier.issn1050-6926en_US
dc.identifier.urihttps://doi.org/10.1007/s12220-025-01969-7en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9418
dc.description.abstractWe study several intrinsic properties of the Carathéodory and Szegő metrics on finitely connected planar domains. Among them are the existence of closed geodesics and geodesic spirals, boundary behaviour of Gaussian curvatures, and -cohomology. A formula for the Szegő metric in terms of the Weierstrass -function is obtained. Variations of these metrics and their Gaussian curvatures on planar annuli are also studied. Consequently, we observe that the optimal universal upper bound for the Gaussian curvature of the Szegő metric is 4 and that no universal lower bounds exist for the Gaussian curvatures of the Carathéodory and Szegő metrics. Moreover, it follows that there are domains where the Gaussian curvature of the Szegő metric assumes both negative and positive values. Lastly, it is also observed that there is no universal upper bound for the ratio of the Szegő and Carathéodory metrics.en_US
dc.language.isoenen_US
dc.publisherSpringer Natureen_US
dc.subjectCarathéodory metricen_US
dc.subjectSzegő metricen_US
dc.subjectGaussian curvatureen_US
dc.subject2025-MAR-WEEK4en_US
dc.subjectTOC-MAR-2025en_US
dc.subject2025en_US
dc.titleSome Remarks on the Carathéodory and Szegő Metrics on Planar Domainsen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleJournal of Geometric Analysisen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.