Please use this identifier to cite or link to this item:
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9438
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | BANERJEE, DEBARGHA | en_US |
dc.contributor.author | Mandal, Tathagata | en_US |
dc.contributor.author | Mondal, Sudipa | en_US |
dc.date.accessioned | 2025-04-01T05:18:43Z | |
dc.date.available | 2025-04-01T05:18:43Z | |
dc.date.issued | 2025-10 | en_US |
dc.identifier.citation | Journal of Number Theory, 25, 160-195 | en_US |
dc.identifier.issn | 0022-314X | en_US |
dc.identifier.issn | 1096-1658 | en_US |
dc.identifier.uri | https://doi.org/10.1016/j.jnt.2024.12.013 | en_US |
dc.identifier.uri | http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9438 | |
dc.description.abstract | In this article, we study two important properties of the symmetric cube transfer of the automorphic representation π associated to a modular form. We first show how the local epsilon factor at each prime changes by twisting in terms of the local Weil-Deligne representation. From this variation number, for each prime p, we classify the types of transfers of the local representations . We also compute the conductor of as it is involved in the variation number. For transfer, the most difficult prime is . | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier | en_US |
dc.subject | Modular forms | en_US |
dc.subject | Galois representations | en_US |
dc.subject | Local epsilon factors | en_US |
dc.subject | Conductors | en_US |
dc.subject | 2025-MAR-WEEK4 | en_US |
dc.subject | TOC-MAR-2025 | en_US |
dc.subject | 2025 | en_US |
dc.title | Two properties of symmetric cube transfers of modular forms | en_US |
dc.type | Article | en_US |
dc.contributor.department | Dept. of Mathematics | en_US |
dc.identifier.sourcetitle | Journal of Number Theory | en_US |
dc.publication.originofpublisher | Foreign | en_US |
Appears in Collections: | JOURNAL ARTICLES |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.