Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9438
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBANERJEE, DEBARGHAen_US
dc.contributor.authorMandal, Tathagataen_US
dc.contributor.authorMondal, Sudipaen_US
dc.date.accessioned2025-04-01T05:18:43Z
dc.date.available2025-04-01T05:18:43Z
dc.date.issued2025-10en_US
dc.identifier.citationJournal of Number Theory, 25, 160-195en_US
dc.identifier.issn0022-314Xen_US
dc.identifier.issn1096-1658en_US
dc.identifier.urihttps://doi.org/10.1016/j.jnt.2024.12.013en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9438
dc.description.abstractIn this article, we study two important properties of the symmetric cube transfer of the automorphic representation π associated to a modular form. We first show how the local epsilon factor at each prime changes by twisting in terms of the local Weil-Deligne representation. From this variation number, for each prime p, we classify the types of transfers of the local representations . We also compute the conductor of as it is involved in the variation number. For transfer, the most difficult prime is .en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.subjectModular formsen_US
dc.subjectGalois representationsen_US
dc.subjectLocal epsilon factorsen_US
dc.subjectConductorsen_US
dc.subject2025-MAR-WEEK4en_US
dc.subjectTOC-MAR-2025en_US
dc.subject2025en_US
dc.titleTwo properties of symmetric cube transfers of modular formsen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleJournal of Number Theoryen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.