Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9445
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBHAGWAT, CHANDRASHEEL
dc.contributor.authorMONDAL, KAUSTABH
dc.contributor.authorSachdeva, Gunja
dc.date.accessioned2025-04-01T10:54:27Z
dc.date.available2025-04-01T10:54:27Z
dc.date.issued2025-01
dc.identifier.citationCanadian Mathematical Bulletin, 68(01), 246 – 261.en_US
dc.identifier.issn0008-4395
dc.identifier.issn1496-4287
dc.identifier.urihttps://doi.org/10.4153/S0008439524000882en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9445
dc.description.abstractLet (τ,Vτ) be a finite dimensional representation of a maximal compact subgroup K of a connected non-compact semisimple Lie group G, and let Γ be a uniform torsion-free lattice in G. We obtain an infinitesimal version of the celebrated Matsushima–Murakami formula, which relates the dimension of the space of automorphic forms associated to τ and multiplicities of irreducible τ∨ -spherical spectra in L2(Γ∖G) . This result gives a promising tool to study the joint spectra of all central operators on the homogenous bundle associated to the locally symmetric space and hence its infinitesimal τ -isospectrality. Along with this, we prove that the almost equality of τ -spherical spectra of two lattices assures the equality of their τ -spherical spectra.en_US
dc.language.isoenen_US
dc.publisherCambridge University Pressen_US
dc.subjectRepresentation equivalenceen_US
dc.subjectIsospectralityen_US
dc.subjectSelberg trace formulaen_US
dc.subjectNon-compact symmetric spaceen_US
dc.subject2025-MAR-WEEK1en_US
dc.subject2025en_US
dc.subjectTOC-MAR-2025en_US
dc.titleOn infinitesimal τ -isospectrality of locally symmetric spacesen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleCanadian Mathematical Bulletinen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.