Please use this identifier to cite or link to this item:
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9464
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | DAS, JISHU | en_US |
dc.date.accessioned | 2025-04-15T06:43:31Z | - |
dc.date.available | 2025-04-15T06:43:31Z | - |
dc.date.issued | 2024-10 | en_US |
dc.identifier.citation | Ramanujan Journal, 65, 637-658. | en_US |
dc.identifier.issn | 1382-4090 | en_US |
dc.identifier.issn | 1572-9303 | en_US |
dc.identifier.uri | https://doi.org/10.1007/s11139-024-00909-3 | en_US |
dc.identifier.uri | http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9464 | - |
dc.description.abstract | Let Sk(N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_k(N)$$\end{document} denote the space of cusp forms of even integer weight k and level N. We prove an asymptotic for the Petersson trace formula for Sk(N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_k(N)$$\end{document} under an appropriate condition. Using the non-vanishing of a Kloosterman sum involved in the asymptotic, we give a lower bound for discrepancy in the Sato-Tate distribution for levels not divisible by 8. This generalizes a result of Jung and Sardari (Math Ann 378(1-2):513-557, 2020, Theorem 1.6) for squarefree levels. An analogue of the Sato-Tate distribution was obtained by Omar and Mazhouda (Ramanujan J 20(1):81-89, 2009, Theorem 3) for the distribution of eigenvalues lambda p2(f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _{p<^>2}(f)$$\end{document} where f is a Hecke eigenform and p is a prime number. As an application of the above-mentioned asymptotic, we obtain a sequence of weights kn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_n$$\end{document} such that discrepancy in the analogue distribution obtained in Omar and Mazhouda (Ramanujan J 20(1):81-89, 2009) has a lower bound | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer Nature | en_US |
dc.subject | Discrepancy | en_US |
dc.subject | Petersson trace formula | en_US |
dc.subject | Kloosterman sums | en_US |
dc.subject | Sato-Tate measure | en_US |
dc.subject | 2024 | en_US |
dc.title | A lower bound for the discrepancy in a Sato-Tate type measure | en_US |
dc.type | Article | en_US |
dc.contributor.department | Dept. of Mathematics | en_US |
dc.identifier.sourcetitle | Ramanujan Journal | en_US |
dc.publication.originofpublisher | Foreign | en_US |
Appears in Collections: | JOURNAL ARTICLES |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.