Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9464
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDAS, JISHUen_US
dc.date.accessioned2025-04-15T06:43:31Z-
dc.date.available2025-04-15T06:43:31Z-
dc.date.issued2024-10en_US
dc.identifier.citationRamanujan Journal, 65, 637-658.en_US
dc.identifier.issn1382-4090en_US
dc.identifier.issn1572-9303en_US
dc.identifier.urihttps://doi.org/10.1007/s11139-024-00909-3en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9464-
dc.description.abstractLet Sk(N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_k(N)$$\end{document} denote the space of cusp forms of even integer weight k and level N. We prove an asymptotic for the Petersson trace formula for Sk(N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_k(N)$$\end{document} under an appropriate condition. Using the non-vanishing of a Kloosterman sum involved in the asymptotic, we give a lower bound for discrepancy in the Sato-Tate distribution for levels not divisible by 8. This generalizes a result of Jung and Sardari (Math Ann 378(1-2):513-557, 2020, Theorem 1.6) for squarefree levels. An analogue of the Sato-Tate distribution was obtained by Omar and Mazhouda (Ramanujan J 20(1):81-89, 2009, Theorem 3) for the distribution of eigenvalues lambda p2(f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _{p<^>2}(f)$$\end{document} where f is a Hecke eigenform and p is a prime number. As an application of the above-mentioned asymptotic, we obtain a sequence of weights kn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_n$$\end{document} such that discrepancy in the analogue distribution obtained in Omar and Mazhouda (Ramanujan J 20(1):81-89, 2009) has a lower bounden_US
dc.language.isoenen_US
dc.publisherSpringer Natureen_US
dc.subjectDiscrepancyen_US
dc.subjectPetersson trace formulaen_US
dc.subjectKloosterman sumsen_US
dc.subjectSato-Tate measureen_US
dc.subject2024en_US
dc.titleA lower bound for the discrepancy in a Sato-Tate type measureen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleRamanujan Journalen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.