Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9465
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKAUSHIK, RAHULen_US
dc.contributor.authorSINGH, ANUPAMen_US
dc.date.accessioned2025-04-15T06:43:31Z-
dc.date.available2025-04-15T06:43:31Z-
dc.date.issued2024-07en_US
dc.identifier.citationLinear Algebra and its Applications, 696, 135-159.en_US
dc.identifier.issn0024-3795en_US
dc.identifier.issn1873-1856en_US
dc.identifier.urihttps://doi.org/10.1016/j.laa.2024.03.031en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9465-
dc.description.abstractThe Matrix Waring problem is if we can write every matrix as a sum of k -th powers. Here, we look at the same problem for triangular matrix algebra T-n ( F-q) consisting of upper triangular matrices over a finite field. We prove that for all integers k, n >= 1, there exists a constant C ( k, n ), such that for all q > C ( k, n ), every matrix in T-n ( F-q) is a sum of three k -th powers. Moreover, if - 1 is k -th power in F-q , then for all q > C ( k, n ), every matrix in T-n ( F-q) is a sum of two k - th powers. We make use of Lang -Weil estimates about the number of solutions of equations over finite fields to achieve the desired results.en_US
dc.language.isoenen_US
dc.publisherElsevier B.V.en_US
dc.subjectWaring problemen_US
dc.subjectLang-Weil estimateen_US
dc.subjectTriangular matricesen_US
dc.subject2024en_US
dc.titleWaring problem for triangular matrix algebraen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleLinear Algebra and its Applicationsen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.