Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9474
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKHAN, SAKILen_US
dc.contributor.authorAGARWALLA, BIJAY KUMARen_US
dc.contributor.authorJAIN, SACHINen_US
dc.date.accessioned2025-04-15T06:48:29Z-
dc.date.available2025-04-15T06:48:29Z-
dc.date.issued2024-12en_US
dc.identifier.citationNew Journal of Physics, 26(12).en_US
dc.identifier.issn1367-2630en_US
dc.identifier.urihttps://doi.org/10.1088/1367-2630/ad976fen_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9474-
dc.description.abstractWe show that the long-time limit of the two-point correlation function obtained via the standard quantum regression theorem (QRT), a standard tool to compute correlation functions in open quantum systems, does not respect the Kubo–Martin–Schwinger equilibrium condition to the non-zero order of the system-bath coupling. We then follow the recently developed Heisenberg operator method for open quantum systems and by applying a 'weak' Markov approximation, derive a new modified version of the QRT that not only respects the KMS condition but further predicts exact answers for certain paradigmatic models in specific limits. We also show that in cases where the modified QRT does not match with exact answers, it always performs better than the standard QRT.en_US
dc.language.isoenen_US
dc.publisherIOP Publishing Ltden_US
dc.subjectOpen quantum systemen_US
dc.subjectModified regression theoremen_US
dc.subjectThermalizationen_US
dc.subject2024en_US
dc.titleModified quantum regression theorem and consistency with Kubo-Martin-Schwinger conditionen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Physicsen_US
dc.identifier.sourcetitleNew Journal of Physicsen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.