Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9496
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDaundkar, Navnathen_US
dc.date.accessioned2025-04-15T06:50:31Z-
dc.date.available2025-04-15T06:50:31Z-
dc.date.issued2024en_US
dc.identifier.citationProceedings of the Royal Society of Edinburgh Section A: Mathematicsen_US
dc.identifier.issn0308-2105en_US
dc.identifier.issn1473-7124en_US
dc.identifier.urihttps://doi.org/10.1017/prm.2024.117en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9496-
dc.description.abstractIn this paper, we define and study an equivariant analogue of Cohen, Farber andWeinberger's parametrized topological complexity. We show that several results inthe non-equivariant case can be extended to the equivariant case. For example, weestablish the fibrewise equivariant homotopy invariance of the sequential equivariantparametrized topological complexity. We obtain several bounds on sequentialequivariant topological complexity involving the equivariant category. We also obtainthe cohomological lower bound and the dimension-connectivity upper bound on thesequential equivariant parametrized topological complexity. In the end, we use theseresults to compute the sequential equivariant parametrized topological complexity ofequivariant Fadell-Neuwirth fibrations and some equivariant fibrations involvinggeneralized projective product spaces.en_US
dc.language.isoenen_US
dc.publisherCambridge University Pressen_US
dc.subjectEquivariant sectional categoryen_US
dc.subjectParametrized topological complexityen_US
dc.subjectEquivariant topological complexityen_US
dc.subjectMotion planning algorithmen_US
dc.subjectFadell-Neuwirth fibrationsen_US
dc.subjectEquivariant fibrationsen_US
dc.titleEquivariant parametrized topological complexityen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleProceedings of the Royal Society of Edinburgh Section A: Mathematicsen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.