Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9497
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBHIMANI, DIVYANG G.en_US
dc.date.accessioned2025-04-15T06:50:31Z-
dc.date.available2025-04-15T06:50:31Z-
dc.date.issued2024-11en_US
dc.identifier.citationJournal of Differential Equations, 408, 449-467.en_US
dc.identifier.issn0022-0396en_US
dc.identifier.issn1090-2732en_US
dc.identifier.urihttps://doi.org/10.1016/j.jde.2024.07.025en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9497-
dc.description.abstractModulation spaces have received considerable interest recently as it is the natural function spaces to consider low regularity Cauchy data for several nonlinear evolution equations. We establish global well-posedness for 3D Klein-Gordon-Hartree equation u(tt) - Delta u + u + (vertical bar center dot vertical bar(-gamma) * vertical bar u vertical bar(2))u = 0 with initial data in modulation spaces M-1(p,p ') x M-p,M-p ' for p is an element of (2, 54 /27-2 gamma), 2 < gamma < 3. We implement Bourgain's high-low frequency decomposition method to establish global well-posedness, which was earlier used for classical Klein-Gordon equation. This is the first result on low regularity for Klein-Gordon-Hartree equation with large initial data in modulation spaces (which do not coincide with Sobolev spaces). (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.en_US
dc.language.isoenen_US
dc.publisherElsevier B.V.en_US
dc.subjectKlein-Gordon-Hartree equationen_US
dc.subjectModulation spacesen_US
dc.subjectGlobal well-posednessen_US
dc.subjectHigh-low frequency decomposition methoden_US
dc.subject2024en_US
dc.titleThe global well-posedness for Klein-Gordon-Hartree equation in modulation spacesen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleJournal of Differential Equationsen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.