Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9503
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMAHATO, TUMPAen_US
dc.contributor.authorShimizu, Ayakaen_US
dc.date.accessioned2025-04-15T06:50:32Z-
dc.date.available2025-04-15T06:50:32Z-
dc.date.issued2024-11en_US
dc.identifier.citationJournal of Knot Theory and Its Ramifications, 33(13).en_US
dc.identifier.issn0218-2165en_US
dc.identifier.issn1793-6527en_US
dc.identifier.urihttps://doi.org/10.1142/S0218216524500421en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9503-
dc.description.abstractA set of regions of a link projection is said to be isolated if any pair of regions in the set share no crossings. The isolate-region number of a link projection is the maximum value of the cardinality for isolated sets of regions of the link projection. In this paper, all the link projections of isolate-region number one are determined. Also, estimations for welded unknotting number and a combinatorial way to find the isolate-region number are discussed, and a formula of the generating function of isolated-region sets is given for the standard projections of (2,n)(2,n)-torus links.en_US
dc.language.isoenen_US
dc.publisherWorld Scientificen_US
dc.subjectIsolate-region numberen_US
dc.subjectIsolated regionsen_US
dc.subjectLink projectionen_US
dc.subjectWarping degreeen_US
dc.subject2024en_US
dc.titleIsolated regions of a link projectionen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleJournal of Knot Theory and Its Ramificationsen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.